Abstract
Taking the ground state rotational band in 24Mg as an example, we investigate the impurity effect of Λ hyperon on collective excitations of atomic nuclei in the framework of non-relativistic energy density functional theory. To this end, we take into account correlations related to the restoration of broken symmetries and fluctuations of collective variables by solving the eigenvalue problem of a five-dimensional collective Hamiltonian for quadrupole vibrational and rotational degrees of freedom. The parameters of the collective Hamiltonian are determined with constrained mean-field calculations for triaxial shapes using the SGII Skyrme force. We compare the low-spin spectrum for 24Mg with the spectrum for the same nucleus inside 25ΛMg. It is found that the Λ hyperon stretches the ground state band and reduces the B(E2:21+→01+) value by ~9%, mainly by softening the potential energy surface towards the spherical shape, even though the shrinkage effect on the average proton radius is only ~0.5%.
Original language | English |
---|---|
Pages (from-to) | 12-24 |
Number of pages | 13 |
Journal | Nuclear Physics A |
Volume | 868-869 |
Issue number | 1 |
DOIs | |
Publication status | Published - 2011 Oct 15 |
Keywords
- Collective Hamiltonian
- E2 transition strengths
- Hypernuclei
- Impurity effect of Lambda hyperon
ASJC Scopus subject areas
- Nuclear and High Energy Physics