TY - JOUR
T1 - Impurity partitioning during colloidal crystallization
AU - Nozawa, Jun
AU - Uda, Satoshi
AU - Naradate, Yuhei
AU - Koizumi, Haruhiko
AU - Fujiwara, Kozo
AU - Toyotama, Akiko
AU - Yamanaka, Junpei
PY - 2013/5/2
Y1 - 2013/5/2
N2 - We have found that an impurity partitioning takes place during growth of colloidal crystals, which was recognized by the fact that the impurity concentration in the solid (CS) was different from that in the initial solution (C0). The effective partition coefficient k eff (=CS/C0) was investigated for pure polystyrene and polystyrene dyed with fluorescent particles by changing the ratio of particle diameters dimp/dcryst and growth rate V. At each size ratio for the polystyrene impurity, keff was less than unity and increased to unity with increasing V, whereas at a given growth rate, keff increased to unity as dimp/dcryst approached unity. These results were consistent with the solute behavior analyzed using the Burton, Prim, and Slichter (BPS) model. The obtained k 0, equilibrium partition coefficient, from a BPS plot increased as dimp/dcryst approached unity. In contrast, while the fluorescent particles also followed the BPS model, they showed higher k 0 values than those of the same size of polystyrene particles. A k0 value greater than unity was obtained for impurities that were similar in size to the host particle. This behavior is attributed to the positive free energy of fusion associated with the incorporation of the fluorescent particles into the host matrix. Such positive free energy of fusion implies the presence of the enthalpy associated with interaction between particles.
AB - We have found that an impurity partitioning takes place during growth of colloidal crystals, which was recognized by the fact that the impurity concentration in the solid (CS) was different from that in the initial solution (C0). The effective partition coefficient k eff (=CS/C0) was investigated for pure polystyrene and polystyrene dyed with fluorescent particles by changing the ratio of particle diameters dimp/dcryst and growth rate V. At each size ratio for the polystyrene impurity, keff was less than unity and increased to unity with increasing V, whereas at a given growth rate, keff increased to unity as dimp/dcryst approached unity. These results were consistent with the solute behavior analyzed using the Burton, Prim, and Slichter (BPS) model. The obtained k 0, equilibrium partition coefficient, from a BPS plot increased as dimp/dcryst approached unity. In contrast, while the fluorescent particles also followed the BPS model, they showed higher k 0 values than those of the same size of polystyrene particles. A k0 value greater than unity was obtained for impurities that were similar in size to the host particle. This behavior is attributed to the positive free energy of fusion associated with the incorporation of the fluorescent particles into the host matrix. Such positive free energy of fusion implies the presence of the enthalpy associated with interaction between particles.
UR - http://www.scopus.com/inward/record.url?scp=84877045814&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84877045814&partnerID=8YFLogxK
U2 - 10.1021/jp309550y
DO - 10.1021/jp309550y
M3 - Article
AN - SCOPUS:84877045814
SN - 1520-6106
VL - 117
SP - 5289
EP - 5295
JO - Journal of Physical Chemistry B
JF - Journal of Physical Chemistry B
IS - 17
ER -