@inproceedings{60abf0ac171143bd9b304be2eabae733,
title = "Incremental neural learning by dynamic and spatial changing weights",
abstract = "In this paper a new neural network model is presented for incremental learning tasks where networks are required to learn new knowledge without forgetting the old one. An essential core of the proposed neural network structure is their dynamic and spatial changing connection weights (DSCWs). A learning scheme is developed for the formulation of the dynamic changing weights, while a structural adaptation is formulated by the spatial changing (growing) connecting weights. To avoid disturbing the past knowledge by the creation of new connections, a restoration mechanism is introduced by using the DSCWs. Usefulness of the proposed model is demonstrated by using a system identification task.",
keywords = "Brain models, Classification, Function approximation, Learning algorithms, Long-term memory and short-term memory, Neural networks",
author = "Noriyasu Homma and Gupta, {Madan M.}",
note = "Publisher Copyright: Copyright {\textcopyright} 2002 IFAC.; 15th World Congress of the International Federation of Automatic Control, 2002 ; Conference date: 21-07-2002 Through 26-07-2002",
year = "2002",
doi = "10.3182/20020721-6-es-1901.00694",
language = "English",
isbn = "9783902661746",
series = "IFAC Proceedings Volumes (IFAC-PapersOnline)",
publisher = "IFAC Secretariat",
number = "1",
pages = "247--252",
editor = "Gabriel Ferrate and Camacho, {Eduardo F.} and Luis Basanez and {de la Puente}, {Juan. A.}",
booktitle = "IFAC Proceedings Volumes (IFAC-PapersOnline)",
address = "Austria",
edition = "1",
}