TY - JOUR
T1 - Influence of matrix plasticity on local stress concentrations near loaded fiber breaks
AU - Okabe, Sayaka
AU - Ohno, Nobutada
AU - Okabe, Tomonaga
PY - 2005/10
Y1 - 2005/10
N2 - In this study, stress concentrations near loaded and initial fiber breaks are analyzed for unidirectional composites with matrix yielding and interfacial sliding. To this end, by performing detailed 3D finite element analysis, it is demonstrated that significant nonproportional stressing occurs in the matrix near loaded fiber breaks in contrast to initial breaks, and that the nonproportional stressing induces almost elastic shear deformation in the matrix outside the first nearest-neighbor fibers of loaded fiber breaks. Then, the 3D shear-lag analytical solution derived by the present authors is modified to be applicable to low fiber volume fractions and is employed to dicuss how the nonproportional stressing in the matrix influences the stress concentrations near loaded fiber breaks. The 3D analytical solution is shown to be applicable to loaded, as well as initial, fiber breaks, if the matrix shear modulus in the solution is prescribed by taking account of the nonproportional stressing. It is thus concluded that the nonproportional stressing in the matrix may considerably lower the stress concentrations near loaded fiber breaks.
AB - In this study, stress concentrations near loaded and initial fiber breaks are analyzed for unidirectional composites with matrix yielding and interfacial sliding. To this end, by performing detailed 3D finite element analysis, it is demonstrated that significant nonproportional stressing occurs in the matrix near loaded fiber breaks in contrast to initial breaks, and that the nonproportional stressing induces almost elastic shear deformation in the matrix outside the first nearest-neighbor fibers of loaded fiber breaks. Then, the 3D shear-lag analytical solution derived by the present authors is modified to be applicable to low fiber volume fractions and is employed to dicuss how the nonproportional stressing in the matrix influences the stress concentrations near loaded fiber breaks. The 3D analytical solution is shown to be applicable to loaded, as well as initial, fiber breaks, if the matrix shear modulus in the solution is prescribed by taking account of the nonproportional stressing. It is thus concluded that the nonproportional stressing in the matrix may considerably lower the stress concentrations near loaded fiber breaks.
KW - Composite Material
KW - Fiber Break
KW - Hexagonal Fiber Array
KW - Matrix Plasticity
KW - Micromechanics
KW - Shear-Lag Theory
KW - Stress Concentration
UR - http://www.scopus.com/inward/record.url?scp=29544446598&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=29544446598&partnerID=8YFLogxK
U2 - 10.1299/kikaia.71.1340
DO - 10.1299/kikaia.71.1340
M3 - 学術論文
AN - SCOPUS:29544446598
SN - 0387-5008
VL - 71
SP - 1340
EP - 1347
JO - Nihon Kikai Gakkai Ronbunshu, A Hen/Transactions of the Japan Society of Mechanical Engineers, Part A
JF - Nihon Kikai Gakkai Ronbunshu, A Hen/Transactions of the Japan Society of Mechanical Engineers, Part A
IS - 10
ER -