TY - JOUR
T1 - Infrared spectroscopic studies on hydrogen-bonded water networks in gas phase clusters
AU - Fujii, Asuka
AU - Mizuse, Kenta
N1 - Funding Information:
We express special thanks to Professor Naohiko Mikami for his great contributions in the early stage of this work and his encouragement throughout the study. We thank Mr Toru Hamashima for his essential contributions to the neutral water cluster study and Dr Jer-Lai Kuo for stimulating discussions and his help in theoretical calculations. We acknowledge Dr Toshihiko Maeyama and Dr Yoshiyuki Matsuda for their support and helpful discussions. This study was financially supported by a Grant-in-Aid for Scientific Research (Project No. 19056001 on Priority Area ‘Molecular Science for Supra Functional Systems’ from MEXT Japan, and Nos. 20·5015, 20550005, and 2235001 from JSPS). K.M. was supported by JSPS Research Fellowships for Young Scientists.
PY - 2013/6
Y1 - 2013/6
N2 - Size-selective infrared (IR) spectroscopy of gas phase water-containing clusters is performed to probe microscopic natures of hydrogen-bonded water networks. Size-selective observation is extended to the size range of a few tens to hundreds of molecules to bridge the gap between simple but unique networks in small-sized water clusters and those in bulk water. IR spectra of two types of large water-containing clusters, phenol-(H2O)n (n < ∼50) and H+(H2O) n (n ≤ 221), are measured in the OH stretching vibrational region. Clear size dependence of the observed spectra is interpreted in terms of coordination numbers of water molecules, ring sizes of hydrogen bond networks and interior crystallisation of the clusters. Structural features of hydrogen bond networks seen in bulk water are confirmed in these large-sized clusters. For more detailed analyses of spectra of H+(H2O)n, the inert gas 'tagging' technique is employed. Tuning of internal energy and isomer distribution of H+(H2O)n is achieved by a choice of inert gas species. An effective approach to spectral isomer separation is proposed on the basis of unexpected inert gas dependence of isomer distribution. Inert gas tagging is also applied to probe hydrogen bond network motifs of large-sized H+(H2O)n in the size range of n = 20-50. A particular success of the tagging is demonstrated on the n = 22 cluster, which has been known as an anti-magic number cluster. An important application of gas phase water clusters is simplification of a complicated phenomenon in liquid water and such model clusters allow us to extract the physical essence of the phenomenon. Radiation chemistry of water (ionisation and following processes) is studied by IR spectroscopy of water cluster radical cations, (H2O)n+. The H3O+-OH ion-radical contact pair formation upon ionisation of water is confirmed in n ≤ 4. Separation of the ion-radical pair by hydration processes is observed in n ≥ 5. This result shows the intrinsic instability of the H3O+-OH ion-radical contact pair in water networks, and implies higher mobility of the OH radical due to its release from the charged site.
AB - Size-selective infrared (IR) spectroscopy of gas phase water-containing clusters is performed to probe microscopic natures of hydrogen-bonded water networks. Size-selective observation is extended to the size range of a few tens to hundreds of molecules to bridge the gap between simple but unique networks in small-sized water clusters and those in bulk water. IR spectra of two types of large water-containing clusters, phenol-(H2O)n (n < ∼50) and H+(H2O) n (n ≤ 221), are measured in the OH stretching vibrational region. Clear size dependence of the observed spectra is interpreted in terms of coordination numbers of water molecules, ring sizes of hydrogen bond networks and interior crystallisation of the clusters. Structural features of hydrogen bond networks seen in bulk water are confirmed in these large-sized clusters. For more detailed analyses of spectra of H+(H2O)n, the inert gas 'tagging' technique is employed. Tuning of internal energy and isomer distribution of H+(H2O)n is achieved by a choice of inert gas species. An effective approach to spectral isomer separation is proposed on the basis of unexpected inert gas dependence of isomer distribution. Inert gas tagging is also applied to probe hydrogen bond network motifs of large-sized H+(H2O)n in the size range of n = 20-50. A particular success of the tagging is demonstrated on the n = 22 cluster, which has been known as an anti-magic number cluster. An important application of gas phase water clusters is simplification of a complicated phenomenon in liquid water and such model clusters allow us to extract the physical essence of the phenomenon. Radiation chemistry of water (ionisation and following processes) is studied by IR spectroscopy of water cluster radical cations, (H2O)n+. The H3O+-OH ion-radical contact pair formation upon ionisation of water is confirmed in n ≤ 4. Separation of the ion-radical pair by hydration processes is observed in n ≥ 5. This result shows the intrinsic instability of the H3O+-OH ion-radical contact pair in water networks, and implies higher mobility of the OH radical due to its release from the charged site.
KW - hydrogen bond
KW - ionizsation
KW - size-selective spectroscopy
KW - water clusters
UR - http://www.scopus.com/inward/record.url?scp=84878404734&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84878404734&partnerID=8YFLogxK
U2 - 10.1080/0144235X.2012.760836
DO - 10.1080/0144235X.2012.760836
M3 - Article
AN - SCOPUS:84878404734
SN - 0144-235X
VL - 32
SP - 266
EP - 307
JO - International Reviews in Physical Chemistry
JF - International Reviews in Physical Chemistry
IS - 2
ER -