TY - JOUR
T1 - Interfacial reaction and electrochemical properties of dense (La,Sr) CoO3-δ cathode on YSZ (1 0 0)
AU - Sase, M.
AU - Ueno, D.
AU - Yashiro, K.
AU - Kaimai, A.
AU - Kawada, T.
AU - Mizusaki, J.
N1 - Funding Information:
This work was financially support by Japan Society of the Promotion of Science (JSPS). Part of the work was supported by Core Research for Evolutional Science and Technology (CREST). The authors would like to thank Mr Sato and Mr Shibata for kindly performing SIMS and SEM analyses, and Dr Yasuda (Tokyo Gas Co.) for providing various perovskite oxide powders.
PY - 2005/2
Y1 - 2005/2
N2 - Reaction between La0.6Sr0.4CoO3 electrode and yttria stabilized zirconia electrolyte (YSZ) was investigated at 973 K to estimate its effect on performance of a solid oxide fuel cell at reduced operation temperatures. Since La0.6Sr0.4CoO3 is a good mixed conductor of electron and oxide ion, oxygen incorporation through the bulk diffusion is fairly fast if it is compared to the surface diffusion and reaction at triple phase boundaries (TPB). In order to simplify the oxygen reaction pathway, a dense electrode film of La0.6Sr 0.4CoO3 was fabricated on an YSZ single crystal by pulsed laser deposition. Electrochemical measurements and secondary ion mass spectrometry (SIMS) analysis were performed before and after a long-term operation test for 3800 h at 973 K. Electrochemical impedance analysis enabled us to distinguish the contribution of the electrode/electrolyte interface resistance from the total electrochemical resistance. The interface resistance was almost independent of oxygen partial pressure, and increased with time according to the parabolic rate law. After the long-term test, Sr rich layer was found between the electrode and the electrolyte. The parabolic rate constant, kp, was obtained from the time dependence of the resistance and the thickness of the reaction layer. It was about 10-17 to 10 -18 cm2 s-1 at 973 K, on the extrapolated line from the literature data measured at higher temperatures.
AB - Reaction between La0.6Sr0.4CoO3 electrode and yttria stabilized zirconia electrolyte (YSZ) was investigated at 973 K to estimate its effect on performance of a solid oxide fuel cell at reduced operation temperatures. Since La0.6Sr0.4CoO3 is a good mixed conductor of electron and oxide ion, oxygen incorporation through the bulk diffusion is fairly fast if it is compared to the surface diffusion and reaction at triple phase boundaries (TPB). In order to simplify the oxygen reaction pathway, a dense electrode film of La0.6Sr 0.4CoO3 was fabricated on an YSZ single crystal by pulsed laser deposition. Electrochemical measurements and secondary ion mass spectrometry (SIMS) analysis were performed before and after a long-term operation test for 3800 h at 973 K. Electrochemical impedance analysis enabled us to distinguish the contribution of the electrode/electrolyte interface resistance from the total electrochemical resistance. The interface resistance was almost independent of oxygen partial pressure, and increased with time according to the parabolic rate law. After the long-term test, Sr rich layer was found between the electrode and the electrolyte. The parabolic rate constant, kp, was obtained from the time dependence of the resistance and the thickness of the reaction layer. It was about 10-17 to 10 -18 cm2 s-1 at 973 K, on the extrapolated line from the literature data measured at higher temperatures.
KW - A. Ceramics
KW - A. Interfaces
KW - D. Diffusion
KW - D. Electrochemical properties
UR - http://www.scopus.com/inward/record.url?scp=13844278192&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=13844278192&partnerID=8YFLogxK
U2 - 10.1016/j.jpcs.2004.06.057
DO - 10.1016/j.jpcs.2004.06.057
M3 - Conference article
AN - SCOPUS:13844278192
SN - 0022-3697
VL - 66
SP - 343
EP - 348
JO - Journal of Physics and Chemistry of Solids
JF - Journal of Physics and Chemistry of Solids
IS - 2-4
ER -