TY - JOUR
T1 - Interleukin-6 maintains glucose homeostasis to support strenuous masseter muscle activity in mice
AU - Tsuchiya, Masahiro
AU - Kiyama, Tomomi
AU - Tsuchiya, Shinobu
AU - Takano, Hirohisa
AU - Nemoto, Eiji
AU - Sasaki, Keiichi
AU - Watanabe, Makoto
AU - Sugawara, Shunji
AU - Endo, Yasuo
PY - 2012
Y1 - 2012
N2 - The cytokine interleukin-6 (IL-6) is released from working skeletal muscles and reportedly plays key roles in their glucose homeostasis. However, it is unclear whether IL-6 plays such roles in the masseter muscle (MM), which is important in normal and pathological chewing behaviors, such as bruxism and/or prolonged clenching. When restrained (R+) in a narrow cylinder blocked at the front end with a thin plastic strip, a mouse gnaws away (G+) the strip to escape. The absolute weight of plastic gnawed away serves as an index of MM activity. Using this model, we examined the roles of IL-6 in MM with the following results. R+G+ increased the expression levels of IL-6 and glucose transporter 4 (Glut4) mRNAs in MM and the serum level of IL-6 protein. IL-6-defcient mice exhibited about 60% less gnawing activity than wild-type mice at 3-4 h after the start of R+G+, slower recovery of glycogen levels (indicating poorer glucose supply) in MM after R+G+, and no signifcant change in Glut4 mRNA in MM upon R+G+. During an R+G+ test conducted after "training" (repeated R+G+ sessions), wild-type mice exhibited greater gnawing activity than untrained controls, but no increase in IL-6 mRNA in MM. IL-6 mRNA increased in MM when hard food was eaten by mice raised on soft food for 3 weeks from weaning, but not in those raised on (accustomed to) hard food. Thus, IL-6 may maintain glucose homeostasis in MM in support of unusually strenuous activity, but not of accustomed activity levels.
AB - The cytokine interleukin-6 (IL-6) is released from working skeletal muscles and reportedly plays key roles in their glucose homeostasis. However, it is unclear whether IL-6 plays such roles in the masseter muscle (MM), which is important in normal and pathological chewing behaviors, such as bruxism and/or prolonged clenching. When restrained (R+) in a narrow cylinder blocked at the front end with a thin plastic strip, a mouse gnaws away (G+) the strip to escape. The absolute weight of plastic gnawed away serves as an index of MM activity. Using this model, we examined the roles of IL-6 in MM with the following results. R+G+ increased the expression levels of IL-6 and glucose transporter 4 (Glut4) mRNAs in MM and the serum level of IL-6 protein. IL-6-defcient mice exhibited about 60% less gnawing activity than wild-type mice at 3-4 h after the start of R+G+, slower recovery of glycogen levels (indicating poorer glucose supply) in MM after R+G+, and no signifcant change in Glut4 mRNA in MM upon R+G+. During an R+G+ test conducted after "training" (repeated R+G+ sessions), wild-type mice exhibited greater gnawing activity than untrained controls, but no increase in IL-6 mRNA in MM. IL-6 mRNA increased in MM when hard food was eaten by mice raised on soft food for 3 weeks from weaning, but not in those raised on (accustomed to) hard food. Thus, IL-6 may maintain glucose homeostasis in MM in support of unusually strenuous activity, but not of accustomed activity levels.
KW - Fatigue
KW - Glucose homeostasis
KW - Interleukin-6
KW - Masseter muscle
KW - Mastication
UR - http://www.scopus.com/inward/record.url?scp=84863824272&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84863824272&partnerID=8YFLogxK
U2 - 10.1620/tjem.227.109
DO - 10.1620/tjem.227.109
M3 - Article
C2 - 22706344
AN - SCOPUS:84863824272
SN - 0040-8727
VL - 227
SP - 109
EP - 117
JO - Tohoku Journal of Experimental Medicine
JF - Tohoku Journal of Experimental Medicine
IS - 2
ER -