Abstract
We investigate the intermolecular-interaction effects on the longitudinal second hyperpolarizabilities (γ) for two types of π-π stacking clusters: C5H7+ dimer and π-conjugated main chains (CnHn+2, 6 ≤ n ≤ 16) interacting in both end regions with two allyl cations (C3H5+). The γ values are calculated by the finite-field approach using several ab initio molecular orbital and density functional methods. It is found that in the first model the π-π interaction between the upper and lower π-orbitals significantly reduces the magnitude of effective γ per monomer, while the second model exhibits a remarkable enhancement of γ values as compared to those of isolated main chains. The analysis using the hyperpolarizability density and orbital interaction elucidates that the reduction of longitudinal γ value in the first model originates in the reduction of longitudinal π-conjugated electron distributions due to the perpendicular π-π orbital interactions, whereas the enhancement of longitudinal γ in the second model is caused by the intermolecular charge transfer between both end perturbing molecules via the main chain. On the basis of these results, we discuss a novel guideline of controlling third-order nonlinear optical properties of clusters.
Original language | English |
---|---|
Pages (from-to) | 211-222 |
Number of pages | 12 |
Journal | Journal of Computational Methods in Sciences and Engineering |
Volume | 6 |
Issue number | 1-4 |
Publication status | Published - 2006 Jan 1 |
Externally published | Yes |
ASJC Scopus subject areas
- Engineering(all)
- Computer Science Applications
- Computational Mathematics