Abstract
Recently there have been many efforts to investigate navigation technology and apply it in various clinical fields in which the target position in the surgical region is indicated during surgery. The objective is to facilitate an intuitive understanding of the surgical region by the surgeon, so that the accuracy of the surgery can be improved. Currently, the position of the surgical area is usually measured by a magnetic sensor or a marker-type optical 3D position sensor. In navigation of hard tissue such as bone, the target is rigid, and the position of the target can be measured from several discrete point markers. In navigation of soft tissue such as the body surface and the liver, where the shape and the position can change easily, a position sensor which can measure the state of modification in the form of time-series surface data is required. In the method proposed here in order to deal with this problem, a geometrical pattern is projected on the target by a PC projector and is captured in real time from various directions with using DV cameras. This biological deformation measurement system can be easily installed in an operating room and can simultaneously measure and visualize the 3D shape and the textural information of the target. An animal experiment was performed. Surface shape time-series data were used and were updated from time to time during the surgery, and registration of the target organ model was performed before the surgery. Data-fusion processing was performed, displaying the measured surface data of the surgical region together with an internal structure model of the organ. The results are reported.
Original language | English |
---|---|
Pages (from-to) | 45-54 |
Number of pages | 10 |
Journal | Systems and Computers in Japan |
Volume | 37 |
Issue number | 4 |
DOIs | |
Publication status | Published - 2006 Apr 1 |
Externally published | Yes |
Keywords
- Biological deformation measurement
- Geometrical information during surgery
- Surgical navigation
- Video texture mapping
ASJC Scopus subject areas
- Theoretical Computer Science
- Information Systems
- Hardware and Architecture
- Computational Theory and Mathematics