TY - GEN
T1 - Inverse estimation of muscle activations from joint torque via local multiple regression
AU - Li, Zhan
AU - Hayashibe, Mitsuhiro
AU - Guiraud, David
PY - 2013
Y1 - 2013
N2 - The signal measured with an electromyogram (EMG) is the summation of all action potentials of motor units active at a certain time. According to previous literature, one can establish the relationship between torque and EMG/activations in a forward way, i.e., employing EMG of multiple channels to estimate the joint torque. Once the relationship is established, the torque can be predicted with EMG recordings. However, in some applications of neuroprosthetics where we need to make muscle control, it is required to inversely have an insight regarding the muscle activations under a specific motion scenario from the corresponding torque. Motivated by this point, this paper investigates inverse estimation of muscle activations in random contractions at the ankle joint. Local multiple regression is exploited for finding the relationship between muscle activations and torque. Such technique is able to rebuild the relationship between muscle activations and joint torque inversely based on experimental data obtained from five able-bodied subjects, and the resultant optimal weight matrix can indicate each muscle's contribution in the production of the torque. Further cross validation on prediction of muscle activations with joint torque with optimal weights shows that such approach may possess promising performance.
AB - The signal measured with an electromyogram (EMG) is the summation of all action potentials of motor units active at a certain time. According to previous literature, one can establish the relationship between torque and EMG/activations in a forward way, i.e., employing EMG of multiple channels to estimate the joint torque. Once the relationship is established, the torque can be predicted with EMG recordings. However, in some applications of neuroprosthetics where we need to make muscle control, it is required to inversely have an insight regarding the muscle activations under a specific motion scenario from the corresponding torque. Motivated by this point, this paper investigates inverse estimation of muscle activations in random contractions at the ankle joint. Local multiple regression is exploited for finding the relationship between muscle activations and torque. Such technique is able to rebuild the relationship between muscle activations and joint torque inversely based on experimental data obtained from five able-bodied subjects, and the resultant optimal weight matrix can indicate each muscle's contribution in the production of the torque. Further cross validation on prediction of muscle activations with joint torque with optimal weights shows that such approach may possess promising performance.
UR - http://www.scopus.com/inward/record.url?scp=84886485635&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84886485635&partnerID=8YFLogxK
U2 - 10.1109/EMBC.2013.6611078
DO - 10.1109/EMBC.2013.6611078
M3 - Conference contribution
C2 - 24111265
AN - SCOPUS:84886485635
SN - 9781457702167
T3 - Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS
SP - 6639
EP - 6642
BT - 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2013
T2 - 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2013
Y2 - 3 July 2013 through 7 July 2013
ER -