Abstract
We investigated formation processes of a porous anodic alumina film on a p-type silicon (Si) substrate using infrared absorption spectroscopy in the multiple internal reflection geometry (MIR-IRAS). We observed drastic IR spectral changes when anodization took place near the interface between an aluminum (Al) layer and a Si substrate. The intensity of absorption peaks due to porous anodic alumina increased with a decrease in anodic current density and it decreased simultaneously with formation of silicon oxides (SiO 2 ) at the interface between a porous anodic porous alumina film and a Si substrate after appearance of a spike of anodic current density which indicated changes of states of electric double layer at the interface between an electrolyte and an electrode due to contact between an electrolyte and a Si substrate. The results suggested that the formation of SiO 2 nanodots on a Si substrate promoted penetration of electrolytes to peel the porous anodic alumina film from it.
Original language | English |
---|---|
Pages (from-to) | 369-373 |
Number of pages | 5 |
Journal | Applied Surface Science |
Volume | 237 |
Issue number | 1-4 |
DOIs | |
Publication status | Published - 2004 Oct 15 |
Keywords
- Anodization
- Electrochemistry
- Infrared absorption spectroscopy
- Liquid-solid interface
- Nanostructure
- Porous alumina
ASJC Scopus subject areas
- Chemistry(all)
- Condensed Matter Physics
- Physics and Astronomy(all)
- Surfaces and Interfaces
- Surfaces, Coatings and Films