TY - JOUR
T1 - Investigation of the ion storage/transfer behavior in an electrical double- layer capacitor by using ordered microporous carbons as model materials
AU - Nishihara, Hirotomo
AU - Itoi, Hiroyuki
AU - Kogure, Taichi
AU - Hou, Peng Xiang
AU - Touhara, Hidekazu
AU - Okino, Fujio
AU - Kyotani, Takashi
PY - 2009/5/18
Y1 - 2009/5/18
N2 - An ordered microporous carbon, which was prepared with zeolite as a template, was used as a model material to understand the ion storage/ transfer behavior in electrical double-layer capacitor (EDLC). Several types of such zeolite-templated carbons (ZTCs) with different structures (framework regularity, particle size and pore diameter) were prepared and their EDLC performances were evaluated in an organic electrolyte solution (1 <SC>M Et4NBF4/ propylene carbonate). Moreover, a simple method to evaluate a degree of wettability of microporous carbon with propylene carbonate was developed. It was found that the capacitance was almost proportional to the surface area and this linearity was retained even for the carbons with very high surface areas (> 2000m2g-1). It has often been pointed out that thin pore walls limit capacitance and this usually gives rise to the deviation from linearity, but such a limitation was not observed in ZTCs, despite their very thin pore walls (a single graphene, ca. 0.34 nm). The present study clearly indicates that three-dimensionally connected and regularly arranged micro- pores were very effective at reducing ion-transfer resistance. Despite relatively small pore diameter ZTCs (ca. 1.2 nm), their power density remained almost unchanged even though the particle size was increased up to several microns. However, when the pore diameter became smaller than 1.2 nm, the power density was decreased due to the difficulty of smooth ion-transfer in such small micropores..
AB - An ordered microporous carbon, which was prepared with zeolite as a template, was used as a model material to understand the ion storage/ transfer behavior in electrical double-layer capacitor (EDLC). Several types of such zeolite-templated carbons (ZTCs) with different structures (framework regularity, particle size and pore diameter) were prepared and their EDLC performances were evaluated in an organic electrolyte solution (1 <SC>M Et4NBF4/ propylene carbonate). Moreover, a simple method to evaluate a degree of wettability of microporous carbon with propylene carbonate was developed. It was found that the capacitance was almost proportional to the surface area and this linearity was retained even for the carbons with very high surface areas (> 2000m2g-1). It has often been pointed out that thin pore walls limit capacitance and this usually gives rise to the deviation from linearity, but such a limitation was not observed in ZTCs, despite their very thin pore walls (a single graphene, ca. 0.34 nm). The present study clearly indicates that three-dimensionally connected and regularly arranged micro- pores were very effective at reducing ion-transfer resistance. Despite relatively small pore diameter ZTCs (ca. 1.2 nm), their power density remained almost unchanged even though the particle size was increased up to several microns. However, when the pore diameter became smaller than 1.2 nm, the power density was decreased due to the difficulty of smooth ion-transfer in such small micropores..
KW - Carbon
KW - Electrochemistry
KW - Microporous materials
KW - Template synthesis
KW - Zeolites
UR - http://www.scopus.com/inward/record.url?scp=66249125349&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=66249125349&partnerID=8YFLogxK
U2 - 10.1002/chem.200802406
DO - 10.1002/chem.200802406
M3 - Article
C2 - 19338036
AN - SCOPUS:66249125349
SN - 0947-6539
VL - 15
SP - 5355
EP - 5363
JO - Chemistry - A European Journal
JF - Chemistry - A European Journal
IS - 21
ER -