TY - JOUR
T1 - Investigation of the relationship between protein-protein interaction and catalytic activity of a heme-regulated phosphodiesterase from Escherichia coli (Ec DOS) by protein microarray
AU - Sasakura, Yukie
AU - Kanda, Katsuhiro
AU - Yoshimura-Suzuki, Tokiko
AU - Matsui, Takuya
AU - Fukuzono, Shinichi
AU - Shimizu, Toru
PY - 2005/7/19
Y1 - 2005/7/19
N2 - Ec DOS, a heme-regulated phosphodiesterase from Escherichia coli, is composed of an N-terminal heme-bound PAS domain and a C-terminal phosphodiesterase domain. The heme redox state in the PAS domain regulates Ec DOS phosphodiesterase activity. Interestingly, the isolated heme-bound PAS fragment enhances phosphodiesterase activity of full-length Ec DOS. The enhancement is also regulated by the heme redox state of the isolated PAS domain. In the present study, we used a newly developed protein microarray system to examine the relationship between catalytic activity and the interaction of full-length Ec DOS and the isolated PAS fragment. Adenosine 3′,5′-cyclic monophosphate (cAMP), a substrate of the Ec DOS phosphodiesterase, was found to be indispensable for the interaction between Ec DOS and the PAS fragment, and two phosphodiesterase inhibitors, 3-isobutyl-methyl-xanthine and etazolate hydrochloride, hindered the interaction. In addition, an enzyme with a mutation in the putative cAMP-binding sites (H590 and H594) was unable to interact with Ec DOS and lacked enzymatic activity. These results strongly suggest a close relationship between Ec DOS phosphodiesterase activity and interaction with the isolated PAS fragment. Therefore, this study provides insights into the mechanism of how the isolated PAS domain activates Ec DOS, which has important implications for the general role of the isolated PAS domain in cells. Moreover, we found that multiple microscale analyses using the protein microarray system had several advantages over conventional affinity column methods, including the quantity of protein needed, the sensitivity, the variability of immobilized protein, and the time required for the experiment.
AB - Ec DOS, a heme-regulated phosphodiesterase from Escherichia coli, is composed of an N-terminal heme-bound PAS domain and a C-terminal phosphodiesterase domain. The heme redox state in the PAS domain regulates Ec DOS phosphodiesterase activity. Interestingly, the isolated heme-bound PAS fragment enhances phosphodiesterase activity of full-length Ec DOS. The enhancement is also regulated by the heme redox state of the isolated PAS domain. In the present study, we used a newly developed protein microarray system to examine the relationship between catalytic activity and the interaction of full-length Ec DOS and the isolated PAS fragment. Adenosine 3′,5′-cyclic monophosphate (cAMP), a substrate of the Ec DOS phosphodiesterase, was found to be indispensable for the interaction between Ec DOS and the PAS fragment, and two phosphodiesterase inhibitors, 3-isobutyl-methyl-xanthine and etazolate hydrochloride, hindered the interaction. In addition, an enzyme with a mutation in the putative cAMP-binding sites (H590 and H594) was unable to interact with Ec DOS and lacked enzymatic activity. These results strongly suggest a close relationship between Ec DOS phosphodiesterase activity and interaction with the isolated PAS fragment. Therefore, this study provides insights into the mechanism of how the isolated PAS domain activates Ec DOS, which has important implications for the general role of the isolated PAS domain in cells. Moreover, we found that multiple microscale analyses using the protein microarray system had several advantages over conventional affinity column methods, including the quantity of protein needed, the sensitivity, the variability of immobilized protein, and the time required for the experiment.
UR - http://www.scopus.com/inward/record.url?scp=22244440813&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=22244440813&partnerID=8YFLogxK
U2 - 10.1021/bi050406u
DO - 10.1021/bi050406u
M3 - Article
C2 - 16008345
AN - SCOPUS:22244440813
SN - 0006-2960
VL - 44
SP - 9598
EP - 9605
JO - Biochemistry
JF - Biochemistry
IS - 28
ER -