TY - JOUR
T1 - Involvement of bradykinin generation in intravascular dissemination of Vibrio vulnificus and prevention of invasion by a bradykinin antagonist
AU - Maruo, K.
AU - Akaike, T.
AU - Ono, T.
AU - Maeda, H.
PY - 1998
Y1 - 1998
N2 - Involvement of bradykinin generation in bacterial invasion was examined by using a gram-negative bacillus, Vibrio vulnificus, which is known to invade the blood circulatory system and cause septicemia. V. vulnificus was injected intraperitoneally (i.p.) into mice with or without bradykinin or a bradykinin (B2 receptor) antagonist. Dissemination of V. vulnificus from peritoneal septic foci to the circulating blood was assessed by counting of viable bacteria in venous blood by use of the colony-forming assay. Intravascular dissemination of V. vulnificus in mice was significantly potentiated by simultaneous injection with bradykinin but was markedly reduced by coadministration with the B2 antagonist D-Arg, [Hyp3, Thi5,8, D-Phe7]-bradykinin. Furthermore, V. vulnificus lethality was significantly increased when bradykinin was administered simultaneously with the bacillus, whereas it was definitely suppressed by treatment with D-Arg, [Hyp3, Thi5,8, D-Phe7]-bradykinin. Similarly, ovomacroglobulin, a potent inhibitor of the V. vulnificus protease, showed a strong suppressive effect on the V. vulnificus septicemia. We also confirmed appreciable bradykinin production in the primary septic foci in the mouse peritoneal cavity after i.p. inoculation with V. vulnificus. It is thus concluded that bradykinin generation in infectious foci is critically involved in facilitation of intravascular dissemination of V. vulnificus.
AB - Involvement of bradykinin generation in bacterial invasion was examined by using a gram-negative bacillus, Vibrio vulnificus, which is known to invade the blood circulatory system and cause septicemia. V. vulnificus was injected intraperitoneally (i.p.) into mice with or without bradykinin or a bradykinin (B2 receptor) antagonist. Dissemination of V. vulnificus from peritoneal septic foci to the circulating blood was assessed by counting of viable bacteria in venous blood by use of the colony-forming assay. Intravascular dissemination of V. vulnificus in mice was significantly potentiated by simultaneous injection with bradykinin but was markedly reduced by coadministration with the B2 antagonist D-Arg, [Hyp3, Thi5,8, D-Phe7]-bradykinin. Furthermore, V. vulnificus lethality was significantly increased when bradykinin was administered simultaneously with the bacillus, whereas it was definitely suppressed by treatment with D-Arg, [Hyp3, Thi5,8, D-Phe7]-bradykinin. Similarly, ovomacroglobulin, a potent inhibitor of the V. vulnificus protease, showed a strong suppressive effect on the V. vulnificus septicemia. We also confirmed appreciable bradykinin production in the primary septic foci in the mouse peritoneal cavity after i.p. inoculation with V. vulnificus. It is thus concluded that bradykinin generation in infectious foci is critically involved in facilitation of intravascular dissemination of V. vulnificus.
UR - http://www.scopus.com/inward/record.url?scp=0031931098&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0031931098&partnerID=8YFLogxK
U2 - 10.1128/iai.66.2.866-869.1998
DO - 10.1128/iai.66.2.866-869.1998
M3 - Article
C2 - 9453658
AN - SCOPUS:0031931098
SN - 0019-9567
VL - 66
SP - 866
EP - 869
JO - Infection and Immunity
JF - Infection and Immunity
IS - 2
ER -