TY - JOUR
T1 - Iodide and triiodide anion complexes involving anion-π interactions with a tetrazine-based receptor
AU - Savastano, Matteo
AU - Bazzicalupi, Carla
AU - García, Celeste
AU - Gellini, Cristina
AU - López de La Torre, María Dolores
AU - Mariani, Palma
AU - Pichierri, Fabio
AU - Bianchi, Antonio
AU - Melguizo, Manuel
N1 - Funding Information:
Financial support from the Italian MIUR (project 2015MP34H3) is gratefully acknowledged. The centre of instrumental facilities, STI, of the University of Jaén is acknowledged for technical assistance. FP thanks the Department of Applied Chemistry of the Graduate School of Engineering of Tohoku University for financial support.
Publisher Copyright:
© The Royal Society of Chemistry.
PY - 2017
Y1 - 2017
N2 - Protonated forms of the tetrazine ligand L2 (3,6-bis(morpholin-4-ylethyl)-1,2,4,5-tetrazine) interact with iodide in aqueous solution forming relatively stable complexes (ΔG° = -11.6(4) kJ mol-1 for HL2+ + I- = (HL2)I and ΔG° = -13.4(2) kJ mol-1 for H2L22+ + I- = [(H2L2)I]+). When solutions of [(H2L2)I]+ are left in contact with air, crystals of the oxidation product (H2L2)2(I3)3I·4H2O are formed. Unfortunately, the low solubility of I3 - complexes prevents the determination of their stability constants. The crystal structures of H2L2I2·H2O (1), H2L2(I3)2·2H2O (2) and (H2L2)2(I3)3I·4H2O (3) were determined by means of X-ray diffraction analyses. In all crystal structures, it was found that the interaction between I- and I3 - with H2L22+ is dominated by anion interactions with the π electron density of the receptor. Only in the case of 1, the iodide anions involved in close anion-π interactions with the ligand tetrazine ring form an additional H-bond with the protonated morpholine nitrogen of an adjacent ligand molecule. Conversely, in crystals of 2 and 3 there are alternate segregated planes which contain only protonated ligands hydrogen-bonded to cocrystallized water molecules or I3 - and I- forming infinite two-dimensional networks established through short interhalogen contacts, making these crystalline products good candidates to behave as solid conductors. In the solid complexes, the triiodide anion displays both end-on and side-on interaction modes with the tetrazine ring, in agreement with density functional theory calculations indicating a preference for the alignment of the I3 - molecular axis with the molecular axis of the ligand. Further information about geometries and structures of triiodide anions in 2 and 3 was acquired by the analysis of their Raman spectra.
AB - Protonated forms of the tetrazine ligand L2 (3,6-bis(morpholin-4-ylethyl)-1,2,4,5-tetrazine) interact with iodide in aqueous solution forming relatively stable complexes (ΔG° = -11.6(4) kJ mol-1 for HL2+ + I- = (HL2)I and ΔG° = -13.4(2) kJ mol-1 for H2L22+ + I- = [(H2L2)I]+). When solutions of [(H2L2)I]+ are left in contact with air, crystals of the oxidation product (H2L2)2(I3)3I·4H2O are formed. Unfortunately, the low solubility of I3 - complexes prevents the determination of their stability constants. The crystal structures of H2L2I2·H2O (1), H2L2(I3)2·2H2O (2) and (H2L2)2(I3)3I·4H2O (3) were determined by means of X-ray diffraction analyses. In all crystal structures, it was found that the interaction between I- and I3 - with H2L22+ is dominated by anion interactions with the π electron density of the receptor. Only in the case of 1, the iodide anions involved in close anion-π interactions with the ligand tetrazine ring form an additional H-bond with the protonated morpholine nitrogen of an adjacent ligand molecule. Conversely, in crystals of 2 and 3 there are alternate segregated planes which contain only protonated ligands hydrogen-bonded to cocrystallized water molecules or I3 - and I- forming infinite two-dimensional networks established through short interhalogen contacts, making these crystalline products good candidates to behave as solid conductors. In the solid complexes, the triiodide anion displays both end-on and side-on interaction modes with the tetrazine ring, in agreement with density functional theory calculations indicating a preference for the alignment of the I3 - molecular axis with the molecular axis of the ligand. Further information about geometries and structures of triiodide anions in 2 and 3 was acquired by the analysis of their Raman spectra.
UR - http://www.scopus.com/inward/record.url?scp=85017151116&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85017151116&partnerID=8YFLogxK
U2 - 10.1039/c7dt00134g
DO - 10.1039/c7dt00134g
M3 - Article
C2 - 28262880
AN - SCOPUS:85017151116
SN - 1477-9226
VL - 46
SP - 4518
EP - 4529
JO - Dalton Transactions
JF - Dalton Transactions
IS - 14
ER -