@inproceedings{056028291c00414390269e309c125b44,
title = "Issues on curvaton scenario with the thermal effect",
author = "Shuichiro Yokoyama and Naoya Kitajima and Tomohiro Takesako and Tomo Takahashi",
note = "Funding Information: FIG. 2: The rΓ/HdependenceN of fNL;*tofortal*entrΓ op=y*after*theste*ingly ,whenthecurv aton dissipatesitsenergythrough 6 8 10 12 n14 16 18 complete*curvaton*decay n NΓ0(1+C(Td/mσ) ) ( n = 0 , 1, 1.5, 1.6, 1.7) (n = 0 the dissipation rate Γ ∝ Td with n ≥ 1.5 at the curv a- Figure1:Numericalresultsfor1.2theCtim=e1e,voglu∗ti=on1o0f6Ω.7σ5,,Ωσrian=d1Γ0/−H1MwiPthannd=m0σ(le=ft10−10MPisthestandardcurvatonscenariocase).magenta;Here,*suddwen*deecsetay*formtounla deca y epoch, the resultan t (ζ−ζr)/S and fNL are panel),1.5(rightpanel). Wesetmfor =eac10h−15n.MA,lsoΓ, =we10ig−n14orem t,hCe =ζr1c.onBtoritgbhrueen;tifoign.u*nuresmTheericalg*rresauylt significan tly differen t from the ones in the standard cur- Figure1:Numericalresults for the time evolu1.0tion oσf Ωσ, Ωr andP Γ/0H with n = 0σ (left vaton scenario especially for the fraction r = 0 .1 ∼ 1. correspond to r = 0.σ9. Here,−15thePhroegr0iioznontais−l 14aexxcilsuσdisedthe bey-fotlhdeingPlnanucmkberresNult. [16]blackat*dasthehed1;*σ lev el Th us, w e w ould lik e to call the curv aton scenario with correspondtors=0.9.Here,thehorizontalaxis**Cis0.8(hthe−ang3.ie-foldingng1≤*********cfNLornresulocal≤mpob8nder.5).s*toN**. Γ ∝ Tn, or more generically Γ satisfying ∂Γ|T > 0, as totalentropyafterthecurvato0.6n ***ccompletelyhang2ing* decays Sf 2: !*sudden*decay*approximatitheon*dissipativ e curv aton scenario.d∂T d totalentropyafterthecurvaton completely decays SfW: e note that the relaxation time ofdothees*noet*wv oolurkti*wonell..of 0.4 thetemp) erature[−1fluctuation {\^E} enhanced{\^E}{\^E}{\^E}{\^E}{\^E}{\^E}{\^E} btyhetrhme dla(iessffipeactti(oins(not(so(largAecknole dgements — This work of NK, TT(T akesak o) ) 0.23rs [=−11 − 1 + 3qs , {\^E} {\^E} {\^E} {\^E} {\^E} and SY w as supported in part by JSPS Researc h Fello w- rs=1− 1+ 4qsrate{\^E} , is zero{\^E} 4in{\^E} the{\^E} sudden deca y appro ximation(9) and th us ships for Y oung Scien tists. ) [ 0.0{\^E} )¯[4/3 (9) small*deviation* 4/3 in Eq. (10). This en tails the infinitely large enhancemen t S¯f qs =0.2 Sf 0.4−1. 0.6 0.8 1.0 appear*around*r~1*?* qs= S¯i forlarge− 1of. theS¯i enoughn.In other words, inordertoregu-temperaturefluctuationbythepositiv e feedbac k; 23rd Workshop on General Relativity and Gravitation in Japan, JGRG 2013 ; Conference date: 05-11-2013 Through 08-11-2013",
year = "2013",
language = "English",
series = "JGRG 2013 - Proceedings of the 23rd Workshop on General Relativity and Gravitation in Japan",
publisher = "Hirosaki University",
pages = "911--918",
booktitle = "JGRG 2013 - Proceedings of the 23rd Workshop on General Relativity and Gravitation in Japan",
}