TY - GEN
T1 - Kernels for structured natural language data
AU - Suzuki, Jun
AU - Sasaki, Yutaka
AU - Maeda, Eisaku
PY - 2004
Y1 - 2004
N2 - This paper devises a novel kernel function for structured natural language data. In the field of Natural Language Processing, feature extraction consists of the following two steps: (1) syntactically and semantically analyzing raw data, i.e., character strings, then representing the results as discrete structures, such as parse trees and dependency graphs with part-of-speech tags; (2) creating (possibly high-dimensional) numerical feature vectors from the discrete structures. The new kernels, called Hierarchical Directed Acyclic Graph (HDAG) kernels, directly accept DAGs whose nodes can contain DAGs. HDAG data structures are needed to fully reflect the syntactic and semantic structures that natural language data inherently have. In this paper, we define the kernel function and show how it permits efficient calculation. Experiments demonstrate that the proposed kernels are superior to existing kernel functions, e.g., sequence kernels, tree kernels, and bag-of-words kernels.
AB - This paper devises a novel kernel function for structured natural language data. In the field of Natural Language Processing, feature extraction consists of the following two steps: (1) syntactically and semantically analyzing raw data, i.e., character strings, then representing the results as discrete structures, such as parse trees and dependency graphs with part-of-speech tags; (2) creating (possibly high-dimensional) numerical feature vectors from the discrete structures. The new kernels, called Hierarchical Directed Acyclic Graph (HDAG) kernels, directly accept DAGs whose nodes can contain DAGs. HDAG data structures are needed to fully reflect the syntactic and semantic structures that natural language data inherently have. In this paper, we define the kernel function and show how it permits efficient calculation. Experiments demonstrate that the proposed kernels are superior to existing kernel functions, e.g., sequence kernels, tree kernels, and bag-of-words kernels.
UR - http://www.scopus.com/inward/record.url?scp=84899017307&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84899017307&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:84899017307
SN - 0262201526
SN - 9780262201520
T3 - Advances in Neural Information Processing Systems
BT - Advances in Neural Information Processing Systems 16 - Proceedings of the 2003 Conference, NIPS 2003
PB - Neural information processing systems foundation
T2 - 17th Annual Conference on Neural Information Processing Systems, NIPS 2003
Y2 - 8 December 2003 through 13 December 2003
ER -