TY - JOUR
T1 - Laser-induced nanometer-nanosecond expansion and contraction dynamics of poly(methyl methacrylate) film studied by time-resolved interferometry
AU - Masubuchi, Tomokazu
AU - Furutani, Hiroshi
AU - Fukumura, Hiroshi
AU - Masuhara, Hiroshi
PY - 2001/4/5
Y1 - 2001/4/5
N2 - The expansion and contraction behavior of a neat poly(methyl methacrylate) film is induced by 248 nm excimer laser exitation and directly measured by nanosecond interferometry. Above the ablation threshold (1400 ml/cm2), the film expands during the excitation laser pulse, and after 25% expansion of the thickness, it undergoes fragmentation. Below the threshold, the expansion rate is still high (a few nm/ns), and permanent swelling is observed after transient expansion and succeeding contraction. By decreasing the laser fluence below 800 mJ/cm2, permanent swelling was not observed, and at a few tens of mJ/cm2, novel oscillatory expansion and contraction behavior was successfully detected. The expansion amplitude as a function of laser fluence indicates that the polymer film undergoes phase transition from glass to rubber upon excitation with a fluence higher than 450 mJ/cm2. In the glass state, the interpenetrating structure of the polymer film and associated free volume distribution may be changed upon irradiation, and photochemical degradation should be involved. A dynamic view of these polymer properties explains well the unique expansion and contraction behavior. Furthermore, these laser-induced morphological changes are compared with those of polymer films doped with aromatic molecules and considered in general.
AB - The expansion and contraction behavior of a neat poly(methyl methacrylate) film is induced by 248 nm excimer laser exitation and directly measured by nanosecond interferometry. Above the ablation threshold (1400 ml/cm2), the film expands during the excitation laser pulse, and after 25% expansion of the thickness, it undergoes fragmentation. Below the threshold, the expansion rate is still high (a few nm/ns), and permanent swelling is observed after transient expansion and succeeding contraction. By decreasing the laser fluence below 800 mJ/cm2, permanent swelling was not observed, and at a few tens of mJ/cm2, novel oscillatory expansion and contraction behavior was successfully detected. The expansion amplitude as a function of laser fluence indicates that the polymer film undergoes phase transition from glass to rubber upon excitation with a fluence higher than 450 mJ/cm2. In the glass state, the interpenetrating structure of the polymer film and associated free volume distribution may be changed upon irradiation, and photochemical degradation should be involved. A dynamic view of these polymer properties explains well the unique expansion and contraction behavior. Furthermore, these laser-induced morphological changes are compared with those of polymer films doped with aromatic molecules and considered in general.
UR - http://www.scopus.com/inward/record.url?scp=0035810436&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0035810436&partnerID=8YFLogxK
U2 - 10.1021/jp0025328
DO - 10.1021/jp0025328
M3 - Article
AN - SCOPUS:0035810436
SN - 1520-6106
VL - 105
SP - 2518
EP - 2524
JO - Journal of Physical Chemistry B
JF - Journal of Physical Chemistry B
IS - 13
ER -