TY - JOUR
T1 - Layer-current waveform of coaxial multi-layer HTS cable considering the flux flow state
AU - Kim, Youngseok
AU - Kim, Sanghyun
AU - Harano, Toshiya
AU - Tsuda, Makoto
AU - Harada, Naoyuki
AU - Hamajima, Takataro
AU - Ono, Michitaka
AU - Takano, Hirohisa
PY - 2004/1
Y1 - 2004/1
N2 - It is important to control the layer current distributions of coaxial multi-layer HTS cables because homogeneous layer current distribution decreases AC loss and increases the largest operational current. In a previous paper, we proposed a theory that can control current distribution based on the concept of flux conservation between two adjacent layers, and demonstrated the theory is in good agreement with experiment results. The theory was effective for an operational current less than the critical current of the cable. It is important to investigate current distribution under the condition of operational current more than the critical current of the cable because the cable experiences fault currents. We have extended the theory to treat the operational current more than the critical current by considering V-I nonlinear characteristics of HTS tapes including flux flow resistance and contact resistance between the cable and terminals. In order to verify the extended theory, we have fabricated a two-layer cable with the same twisting layer pitch, and hence caused inhomogeneous current distribution. It was observed that almost all of operational current less than the critical current flowed on the outer layer because of its lower inductance. When the operational current increased above the critical current of the second layer, the flux flow resistance appeared and distorted the current waveform with phase deviations. Finally, in the case of operational current more than the critical currents of both layers, flux flow resistance strongly affected current waveforms, and thereby the currents of both layers were determined by flux flow resistance. The extended theory simulated the layer current distribution waveforms and demonstrated good agreement with the experimental results under all operational current regions.
AB - It is important to control the layer current distributions of coaxial multi-layer HTS cables because homogeneous layer current distribution decreases AC loss and increases the largest operational current. In a previous paper, we proposed a theory that can control current distribution based on the concept of flux conservation between two adjacent layers, and demonstrated the theory is in good agreement with experiment results. The theory was effective for an operational current less than the critical current of the cable. It is important to investigate current distribution under the condition of operational current more than the critical current of the cable because the cable experiences fault currents. We have extended the theory to treat the operational current more than the critical current by considering V-I nonlinear characteristics of HTS tapes including flux flow resistance and contact resistance between the cable and terminals. In order to verify the extended theory, we have fabricated a two-layer cable with the same twisting layer pitch, and hence caused inhomogeneous current distribution. It was observed that almost all of operational current less than the critical current flowed on the outer layer because of its lower inductance. When the operational current increased above the critical current of the second layer, the flux flow resistance appeared and distorted the current waveform with phase deviations. Finally, in the case of operational current more than the critical currents of both layers, flux flow resistance strongly affected current waveforms, and thereby the currents of both layers were determined by flux flow resistance. The extended theory simulated the layer current distribution waveforms and demonstrated good agreement with the experimental results under all operational current regions.
KW - AC loss
KW - Current distribution
KW - Flux flow
KW - Multi-layer HTS cable
UR - http://www.scopus.com/inward/record.url?scp=0344064949&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0344064949&partnerID=8YFLogxK
U2 - 10.1016/j.cryogenics.2003.07.004
DO - 10.1016/j.cryogenics.2003.07.004
M3 - Article
AN - SCOPUS:0344064949
SN - 0011-2275
VL - 44
SP - 37
EP - 43
JO - Cryogenics
JF - Cryogenics
IS - 1
ER -