TY - JOUR
T1 - LC/ESI/MS analysis of saturated and unsaturated fatty acids in rat intestinal epithelial cells
AU - Lee, Seon Hwa
AU - Pettinella, Caterina
AU - Blair, Ian A.
PY - 2006/12
Y1 - 2006/12
N2 - Reactive oxygen species (ROS) can mediate damage to cellular macromolecules and lipids, Lipid peroxidation is conside to be a major pathway by which ROS can cause tissue damage and alterations in cell membranes. Other factors affecting oxidative damage include the target molecules such as fatty acids, which are readily oxidized by ROS. Thus, lipid peroxidation may depend upon the cellular fatty acid composition. Analysis of saturated fatty acids that are present by liquid chromatography/mass spectrometry (LC/MS) is difficult because they are poorly ionized under electros-pray ionization (ESI) conditions. The separation of short to very long chain saturated and unsaturated fatty acids is also very challepging when LC is employed instead of gas chromatography. The use of trimethylaminoethyl (TMAE) ester iodide derivatization has been shown previously to improve the sensitivities of saturated fatty acids in the ESI mode. A reversed-phase LC method using a diphenyl column was employed to separate 14 fatty acids as their TMAE derivatives. Stable isotope dilution LC/ESI/multiple reaction monitoring/ MS methodology was then developed for the quantitative analysis of seven saturated and seven unsaturated forms of short (C14) to very long (C26) chain fatty acids as their TMAE ester iodide derivatives. This methodology has allowed, the analysis of fatty acid composition from parental rat intestinal epithelial cell and rat intestinal epithelial cells transfected with cyclooxygenase-2, a model system of oxidative stress.
AB - Reactive oxygen species (ROS) can mediate damage to cellular macromolecules and lipids, Lipid peroxidation is conside to be a major pathway by which ROS can cause tissue damage and alterations in cell membranes. Other factors affecting oxidative damage include the target molecules such as fatty acids, which are readily oxidized by ROS. Thus, lipid peroxidation may depend upon the cellular fatty acid composition. Analysis of saturated fatty acids that are present by liquid chromatography/mass spectrometry (LC/MS) is difficult because they are poorly ionized under electros-pray ionization (ESI) conditions. The separation of short to very long chain saturated and unsaturated fatty acids is also very challepging when LC is employed instead of gas chromatography. The use of trimethylaminoethyl (TMAE) ester iodide derivatization has been shown previously to improve the sensitivities of saturated fatty acids in the ESI mode. A reversed-phase LC method using a diphenyl column was employed to separate 14 fatty acids as their TMAE derivatives. Stable isotope dilution LC/ESI/multiple reaction monitoring/ MS methodology was then developed for the quantitative analysis of seven saturated and seven unsaturated forms of short (C14) to very long (C26) chain fatty acids as their TMAE ester iodide derivatives. This methodology has allowed, the analysis of fatty acid composition from parental rat intestinal epithelial cell and rat intestinal epithelial cells transfected with cyclooxygenase-2, a model system of oxidative stress.
KW - Docosahexaenoic acid (DHA)
KW - Fatty Acids derivatives
KW - Liquid Chromatography
KW - Reactive oxygen species (ROS)
KW - Trimethylaminoethyl (TMAE)
UR - http://www.scopus.com/inward/record.url?scp=33845319198&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=33845319198&partnerID=8YFLogxK
U2 - 10.2174/138920006779010584
DO - 10.2174/138920006779010584
M3 - Review article
C2 - 17168692
AN - SCOPUS:33845319198
SN - 1389-2002
VL - 7
SP - 929
EP - 937
JO - Current Drug Metabolism
JF - Current Drug Metabolism
IS - 8
ER -