Learning Dense Correspondences via Local and Non-local Feature Fusion

Wen Chi Chin, Zih Jian Jhang, Yan Hao Huang, Koichi Ito, Hwann Tzong Chen

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

We present a learning-based method for extracting distinctive features on video objects. From the extracted features, we are able to derive dense correspondences between the objects in the current video frame and in the reference template. We train a deep-learning model with non-local blocks to predict dense feature maps for long-range dependencies. A new video object correspondence dataset is introduced for training and for evaluation. Further, we propose a new feature-aggregation technique that is based on the optical flow of consecutive frames and we apply it to the integration of multiple feature maps for alleviating uncertainties. We also use the local information provided by optical flow to evaluate the reliability of feature matching. The experimental results show that our local and nonlocal fusion approach can reduce unreliable correspondences and thus improve the matching accuracy.

Original languageEnglish
Title of host publication2020 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference, APSIPA ASC 2020 - Proceedings
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages1087-1095
Number of pages9
ISBN (Electronic)9789881476883
Publication statusPublished - 2020 Dec 7
Event2020 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference, APSIPA ASC 2020 - Virtual, Auckland, New Zealand
Duration: 2020 Dec 72020 Dec 10

Publication series

Name2020 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference, APSIPA ASC 2020 - Proceedings

Conference

Conference2020 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference, APSIPA ASC 2020
Country/TerritoryNew Zealand
CityVirtual, Auckland
Period20/12/720/12/10

Fingerprint

Dive into the research topics of 'Learning Dense Correspondences via Local and Non-local Feature Fusion'. Together they form a unique fingerprint.

Cite this