TY - JOUR
T1 - Leray's inequality in general multi-connected domains in ℝ n
AU - Farwig, Reinhard
AU - Kozono, Hideo
AU - Yanagisawa, Taku
N1 - Copyright:
Copyright 2012 Elsevier B.V., All rights reserved.
PY - 2012/9
Y1 - 2012/9
N2 - Consider the stationary Navier-Stokes equations in a bounded domain Ω ⊃ ℝ n whose boundary ∂Ω consists of L + 1 smooth (n - 1)-dimensional closed hypersurfaces Γ 0, Γ 1, . . ., Γ L, where Γ 1, . . ., Γ L lie inside of Γ 0 and outside of one another. The Leray inequality of the given boundary data β on ∂Ω plays an important role for the existence of solutions. It is known that if the flux γ i ≡ ∫ Γi β · νd S = 0 on Γ i(ν: the unit outer normal to Γ i) is zero for each i = 0, 1, . . ., L, then the Leray inequality holds. We prove that if there exists a sphere S in Ω separating ∂Ω in such a way that Γ 1, . . ., Γ k (1 ≦ k ≦ L) are contained inside of S and that the others Γ k+1, . . ., Γ L are outside of S, then the Leray inequality necessarily implies that γ 1 + · · · + γ k = 0. In particular, suppose that there are L spheres S 1, . . ., S L in Ω lying outside of one another such that Γ i lies inside of S i for all i = 1, . . ., L. Then the Leray inequality holds if and only if γ 0 = γ 1 = · · · = γ L = 0.
AB - Consider the stationary Navier-Stokes equations in a bounded domain Ω ⊃ ℝ n whose boundary ∂Ω consists of L + 1 smooth (n - 1)-dimensional closed hypersurfaces Γ 0, Γ 1, . . ., Γ L, where Γ 1, . . ., Γ L lie inside of Γ 0 and outside of one another. The Leray inequality of the given boundary data β on ∂Ω plays an important role for the existence of solutions. It is known that if the flux γ i ≡ ∫ Γi β · νd S = 0 on Γ i(ν: the unit outer normal to Γ i) is zero for each i = 0, 1, . . ., L, then the Leray inequality holds. We prove that if there exists a sphere S in Ω separating ∂Ω in such a way that Γ 1, . . ., Γ k (1 ≦ k ≦ L) are contained inside of S and that the others Γ k+1, . . ., Γ L are outside of S, then the Leray inequality necessarily implies that γ 1 + · · · + γ k = 0. In particular, suppose that there are L spheres S 1, . . ., S L in Ω lying outside of one another such that Γ i lies inside of S i for all i = 1, . . ., L. Then the Leray inequality holds if and only if γ 0 = γ 1 = · · · = γ L = 0.
UR - http://www.scopus.com/inward/record.url?scp=84865758945&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84865758945&partnerID=8YFLogxK
U2 - 10.1007/s00208-011-0716-6
DO - 10.1007/s00208-011-0716-6
M3 - Article
AN - SCOPUS:84865758945
SN - 0025-5831
VL - 354
SP - 137
EP - 145
JO - Mathematische Annalen
JF - Mathematische Annalen
IS - 1
ER -