TY - GEN
T1 - LES study of feedback-loop mechanism of supersonic open cavity flows
AU - Li, Weipeng
AU - Nonomura, Taku
AU - Oyama, Akira
AU - Fujii, Kozo
PY - 2010
Y1 - 2010
N2 - Supersonic flow over a three-dimensional rectangular cavity with length-to-depth ratio of 2 is numerically studied by implicit large-eddy simulation to clarify the feedback-loop mechanism. A feedback-loop cycle is described and visualized with phase-averaged analysis of simulation results. Causality between the feedback acoustic wave and leading-edge shedding vortex is clearly demonstrated. Mach wave reflection at trailing edge is turned out to be the generation mechanism of feedback acoustic wave. It is convinced by investigating time-series instantaneous flowfields and auto-correlation coefficients of three simulation cases with different convective Mach number. Components of compression waves in supersonic cavity flows are summarized and their features are discussed. Proper orthogonal Decomposition (POD) in frequency domain is firstly employed to analyze wave propagations inside cavity. Results statistically show the propagation traces of notable compression waves inside cavity which are affected by high-speed recirculation flows.
AB - Supersonic flow over a three-dimensional rectangular cavity with length-to-depth ratio of 2 is numerically studied by implicit large-eddy simulation to clarify the feedback-loop mechanism. A feedback-loop cycle is described and visualized with phase-averaged analysis of simulation results. Causality between the feedback acoustic wave and leading-edge shedding vortex is clearly demonstrated. Mach wave reflection at trailing edge is turned out to be the generation mechanism of feedback acoustic wave. It is convinced by investigating time-series instantaneous flowfields and auto-correlation coefficients of three simulation cases with different convective Mach number. Components of compression waves in supersonic cavity flows are summarized and their features are discussed. Proper orthogonal Decomposition (POD) in frequency domain is firstly employed to analyze wave propagations inside cavity. Results statistically show the propagation traces of notable compression waves inside cavity which are affected by high-speed recirculation flows.
UR - http://www.scopus.com/inward/record.url?scp=78649452840&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=78649452840&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:78649452840
SN - 9781617389221
T3 - 40th AIAA Fluid Dynamics Conference
BT - 40th AIAA Fluid Dynamics Conference
T2 - 40th AIAA Fluid Dynamics Conference
Y2 - 28 June 2010 through 1 July 2010
ER -