Abstract
A non-Hermitian operator that is related to its adjoint through a similarity transformation is defined as a pseudo-Hermitian operator. We study the level statistics of a pseudo-Hermitian Dicke Hamiltonian that undergoes quantum phase transition (QPT). We find that the level-spacing distribution of this Hamiltonian near the integrable limit is close to Poisson distribution, while it is Wigner distribution for the ranges of the parameters for which the Hamiltonian is nonintegrable. We show that the assertion in the context of the standard Dicke model that QPT is a precursor to a change in the level statistics is not valid in general.
Original language | English |
---|---|
Article number | 026213 |
Journal | Physical Review E - Statistical, Nonlinear, and Soft Matter Physics |
Volume | 80 |
Issue number | 2 |
DOIs | |
Publication status | Published - 2009 Aug 20 |
Externally published | Yes |
ASJC Scopus subject areas
- Statistical and Nonlinear Physics
- Statistics and Probability
- Condensed Matter Physics