TY - JOUR
T1 - LIM kinase and slingshot are critical for neurite extension
AU - Endo, Mitsuharu
AU - Ohashi, Kazumasa
AU - Mizuno, Kensaku
PY - 2007/5/4
Y1 - 2007/5/4
N2 - Cofilin and its closely related protein, actin-depolymerizing factor (ADF), are key regulators of actin cytoskeleton dynamics that have been implicated in growth cone motility and neurite extension. Cofilin/ADF are inactivated by LIM kinase (LIMK)-catalyzed phosphorylation and reactivated by Slingshot (SSH)-catalyzed dephosphorylation. Here we examined the roles of cofilin/ADF, LIMKs (LIMK1 and LIMK2), and SSHs (SSH1 and SSH2) in nerve growth factor (NGF)-induced neurite extension. Knockdown of cofilin/ADF by RNA interference almost completely inhibited NGF-induced neurite extension from PC12 cells, and double knockdown of SSH1/SSH2 significantly suppressed both NGF-induced cofilin/ADF dephosphorylation and neurite extension from PC12 cells, thus indicating that cofilin/ADF and their activating phosphatases SSH1/SSH2 are critical for neurite extension. Interestingly, NGF stimulated the activities of both LIMK1 and LIMK2 in PC12 cells, and suppression of LIMK1/LIMK2 expression or activity significantly reduced NGF-induced neurite extension from PC12 cells or chick dorsal root ganglion (DRG) neurons. Inhibition of LIMK1/LIMK2 activity reduced actin filament assembly in the peripheral region of the growth cone of chick DRG neurons. These results suggest that proper regulation of cofilin/ADF activities through control of phosphorylation by LIMKs and SSHs is critical for neurite extension and that LIMKs regulate actin filament assembly at the tip of the growth cone.
AB - Cofilin and its closely related protein, actin-depolymerizing factor (ADF), are key regulators of actin cytoskeleton dynamics that have been implicated in growth cone motility and neurite extension. Cofilin/ADF are inactivated by LIM kinase (LIMK)-catalyzed phosphorylation and reactivated by Slingshot (SSH)-catalyzed dephosphorylation. Here we examined the roles of cofilin/ADF, LIMKs (LIMK1 and LIMK2), and SSHs (SSH1 and SSH2) in nerve growth factor (NGF)-induced neurite extension. Knockdown of cofilin/ADF by RNA interference almost completely inhibited NGF-induced neurite extension from PC12 cells, and double knockdown of SSH1/SSH2 significantly suppressed both NGF-induced cofilin/ADF dephosphorylation and neurite extension from PC12 cells, thus indicating that cofilin/ADF and their activating phosphatases SSH1/SSH2 are critical for neurite extension. Interestingly, NGF stimulated the activities of both LIMK1 and LIMK2 in PC12 cells, and suppression of LIMK1/LIMK2 expression or activity significantly reduced NGF-induced neurite extension from PC12 cells or chick dorsal root ganglion (DRG) neurons. Inhibition of LIMK1/LIMK2 activity reduced actin filament assembly in the peripheral region of the growth cone of chick DRG neurons. These results suggest that proper regulation of cofilin/ADF activities through control of phosphorylation by LIMKs and SSHs is critical for neurite extension and that LIMKs regulate actin filament assembly at the tip of the growth cone.
UR - http://www.scopus.com/inward/record.url?scp=34250305530&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=34250305530&partnerID=8YFLogxK
U2 - 10.1074/jbc.M610873200
DO - 10.1074/jbc.M610873200
M3 - Article
C2 - 17360713
AN - SCOPUS:34250305530
SN - 0021-9258
VL - 282
SP - 13692
EP - 13702
JO - Journal of Biological Chemistry
JF - Journal of Biological Chemistry
IS - 18
ER -