TY - JOUR
T1 - Lipid peroxyl radicals from oxidized oils and heme-iron
T2 - Implication of a high-fat diet in colon carcinogenesis
AU - Sawa, Tomohiro
AU - Akaike, Takaaki
AU - Kida, Kenji
AU - Fukushima, Yukari
AU - Takagi, Koichi
AU - Maeda, Hiroshi
PY - 1998/11
Y1 - 1998/11
N2 - A diet high in fat and iron is known as a risk factor in cancer epidemiology. However, the details of the molecular mechanism remains to be elucidated. We examined the possible implication of lipid peroxyl radicals generated from fatty acids and heme-iron in DNA damage, and hence in the possibility of colon cancer. F344 female rats were given N-nitroso-N- methylurea six times during a 2-week period and then fed diets containing different amounts of safflower oil and hemoglobin (rich in iron) for 36 weeks; the occurrence of colon cancer was determined by H and E staining. In this animal model, simultaneous feeding of a fat diet and heme-iron produced a significant increase (P < 0.05) in the incidence of colon cancer compared with a diet without hemoglobin. Electron paramagnetic resonance and chemiluminescence studies revealed that oxidized refined vegetable oils, particularly safflower oil, readily generated lipid peroxyl radicals in the presence of various heme compounds, and the peroxyl radicals did effectively cleave DNA. Unpurified native vegetable oils contain a high amount of peroxyl radical scavengers, whereas conventional refining processes seem to reduce the levels of many valuable anti-peroxyl radical compounds abundant in plant seeds. In conclusion, lipid peroxides and heme components generate peroxyl radical species that exert DNA-cleaving activity. A plausible explanation is that lipid peroxyl radicals thus generated, which originated from routine dietary components such as fat and red meat, may contribute, at least in part, to the high incidence of colon cancer.
AB - A diet high in fat and iron is known as a risk factor in cancer epidemiology. However, the details of the molecular mechanism remains to be elucidated. We examined the possible implication of lipid peroxyl radicals generated from fatty acids and heme-iron in DNA damage, and hence in the possibility of colon cancer. F344 female rats were given N-nitroso-N- methylurea six times during a 2-week period and then fed diets containing different amounts of safflower oil and hemoglobin (rich in iron) for 36 weeks; the occurrence of colon cancer was determined by H and E staining. In this animal model, simultaneous feeding of a fat diet and heme-iron produced a significant increase (P < 0.05) in the incidence of colon cancer compared with a diet without hemoglobin. Electron paramagnetic resonance and chemiluminescence studies revealed that oxidized refined vegetable oils, particularly safflower oil, readily generated lipid peroxyl radicals in the presence of various heme compounds, and the peroxyl radicals did effectively cleave DNA. Unpurified native vegetable oils contain a high amount of peroxyl radical scavengers, whereas conventional refining processes seem to reduce the levels of many valuable anti-peroxyl radical compounds abundant in plant seeds. In conclusion, lipid peroxides and heme components generate peroxyl radical species that exert DNA-cleaving activity. A plausible explanation is that lipid peroxyl radicals thus generated, which originated from routine dietary components such as fat and red meat, may contribute, at least in part, to the high incidence of colon cancer.
UR - http://www.scopus.com/inward/record.url?scp=0031765164&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0031765164&partnerID=8YFLogxK
M3 - Article
C2 - 9829709
AN - SCOPUS:0031765164
SN - 1055-9965
VL - 7
SP - 1007
EP - 1012
JO - Cancer Epidemiology Biomarkers and Prevention
JF - Cancer Epidemiology Biomarkers and Prevention
IS - 11
ER -