Lipidic cubic phase injector is a viable crystal delivery system for time-resolved serial crystallography

Przemyslaw Nogly, Valerie Panneels, Garrett Nelson, Cornelius Gati, Tetsunari Kimura, Christopher Milne, Despina Milathianaki, Minoru Kubo, Wenting Wu, Chelsie Conrad, Jesse Coe, Richard Bean, Yun Zhao, Petra Båth, Robert Dods, Rajiv Harimoorthy, Kenneth R. Beyerlein, Jan Rheinberger, Daniel James, Daniel DePonteChufeng Li, Leonardo Sala, Garth J. Williams, Mark S. Hunter, Jason E. Koglin, Peter Berntsen, Eriko Nango, So Iwata, Henry N. Chapman, Petra Fromme, Matthias Frank, Rafael Abela, Sébastien Boutet, Anton Barty, Thomas A. White, Uwe Weierstall, John Spence, Richard Neutze, Gebhard Schertler, Jörg Standfuss

Research output: Contribution to journalArticlepeer-review

65 Citations (Scopus)


Serial femtosecond crystallography (SFX) using X-ray free-electron laser sources is an emerging method with considerable potential for time-resolved pump-probe experiments. Here we present a lipidic cubic phase SFX structure of the light-driven proton pump bacteriorhodopsin (bR) to 2.3 Å resolution and a method to investigate protein dynamics with modest sample requirement. Time-resolved SFX (TR-SFX) with a pump-probe delay of 1 ms yields difference Fourier maps compatible with the dark to M state transition of bR. Importantly, the method is very sample efficient and reduces sample consumption to about 1 mg per collected time point. Accumulation of M intermediate within the crystal lattice is confirmed by time-resolved visible absorption spectroscopy. This study provides an important step towards characterizing the complete photocycle dynamics of retinal proteins and demonstrates the feasibility of a sample efficient viscous medium jet for TR-SFX.

Original languageEnglish
Article number12314
JournalNature Communications
Publication statusPublished - 2016 Aug 22


Dive into the research topics of 'Lipidic cubic phase injector is a viable crystal delivery system for time-resolved serial crystallography'. Together they form a unique fingerprint.

Cite this