Local pulse wave velocity estimated from small vibrations measured ultrasonically at multiple points on the arterial wall

Research output: Contribution to journalArticlepeer-review

5 Citations (Scopus)

Abstract

Pulse wave velocity (PWV) is used as a diagnostic criterion for arteriosclerosis, a major cause of heart disease and cerebrovascular disease. However, there are several problems with conventional PWV measurement techniques. One is that a pulse wave is assumed to only have an incident component propagating at a constant speed from the heart to the femoral artery, and another is that PWV is only determined from a characteristic time such as the rise time of the blood pressure waveform. In this study, we noninvasively measured the velocity waveform of small vibrations at multiple points on the carotid arterial wall using ultrasound. Local PWV was determined by analyzing the phase component of the velocity waveform by the least squares method. This method allowed measurement of the time change of the PWV at approximately the arrival time of the pulse wave, which discriminates the period when the reflected component is not contaminated.

Original languageEnglish
Article number07LF14
JournalJapanese journal of applied physics
Volume57
Issue number7
DOIs
Publication statusPublished - 2018 Jul

ASJC Scopus subject areas

  • Engineering(all)
  • Physics and Astronomy(all)

Fingerprint

Dive into the research topics of 'Local pulse wave velocity estimated from small vibrations measured ultrasonically at multiple points on the arterial wall'. Together they form a unique fingerprint.

Cite this