TY - JOUR
T1 - Low-Intensity Pulsed Ultrasound (LIPUS) Promotes BMP9-Induced Osteogenesis and Suppresses Inflammatory Responses in Human Periodontal Ligament-Derived Stem Cells
AU - Kusuyama, Joji
AU - Nakamura, Toshiaki
AU - Ohnishi, Tomokazu
AU - Eiraku, Nahoko
AU - Noguchi, Kazuyuki
AU - Matsuguchi, Tetsuya
PY - 2017/7/1
Y1 - 2017/7/1
N2 - OBJECTIVE: We previously reported that low intensity pulsed ultrasound (LIPUS) promotes marrow stromal cell (MSC) osteogenesis and suppresses the LPS-induced inflammatory response in osteoblasts. Here, we examined the effects of LIPUS on human periodontal ligament-derived stem cells (hPDLSCs) in chronic inflammatory bone disease, such as periodontitis. MATERIALS AND METHODS: hPDLSCs were collected from 3 healthy third molars. hPDLSCs were induced to differentiate by either recombinant BMP2 or BMP9 with or without daily LIPUS treatment (20 min/d). hPDLSCs were also stimulated by Porphyromonas gingivalis-derived LPS (LPS-PG), IL-1beta, and TNF-alpha with or without LIPUS. Matrix mineralization was evaluated by alizarin red S staining. The expression of genes for osteogenic makers and for inflammatory cytokines were analyzed by real time RT-PCR. RESULTS: LIPUS promoted BMP9-induced osteogenesis of hPDLSCs based on increases in both cell calcification and osteogenic marker expression. In contrast, LIPUS did not affect BMP2-induced osteogenic differentiation. LIPUS-induced Noggin expression was potentially involved in the differential response of the cells. Either LPS-PG, IL-1beta, or TNF-alpha-induced ERK phosphorylation and IL-8, CCL2, and RANKL expression were decreased in LIPUS-treated hPDLSCs. Moreover, the inhibitory effects of LPS-PG and IL-1beta on osteogenesis of hPDLSCs were significantly blocked by LIPUS. DISCUSSION: LIPUS is an effective tool to promote osteogenic differentiation under inflammatory conditions.
AB - OBJECTIVE: We previously reported that low intensity pulsed ultrasound (LIPUS) promotes marrow stromal cell (MSC) osteogenesis and suppresses the LPS-induced inflammatory response in osteoblasts. Here, we examined the effects of LIPUS on human periodontal ligament-derived stem cells (hPDLSCs) in chronic inflammatory bone disease, such as periodontitis. MATERIALS AND METHODS: hPDLSCs were collected from 3 healthy third molars. hPDLSCs were induced to differentiate by either recombinant BMP2 or BMP9 with or without daily LIPUS treatment (20 min/d). hPDLSCs were also stimulated by Porphyromonas gingivalis-derived LPS (LPS-PG), IL-1beta, and TNF-alpha with or without LIPUS. Matrix mineralization was evaluated by alizarin red S staining. The expression of genes for osteogenic makers and for inflammatory cytokines were analyzed by real time RT-PCR. RESULTS: LIPUS promoted BMP9-induced osteogenesis of hPDLSCs based on increases in both cell calcification and osteogenic marker expression. In contrast, LIPUS did not affect BMP2-induced osteogenic differentiation. LIPUS-induced Noggin expression was potentially involved in the differential response of the cells. Either LPS-PG, IL-1beta, or TNF-alpha-induced ERK phosphorylation and IL-8, CCL2, and RANKL expression were decreased in LIPUS-treated hPDLSCs. Moreover, the inhibitory effects of LPS-PG and IL-1beta on osteogenesis of hPDLSCs were significantly blocked by LIPUS. DISCUSSION: LIPUS is an effective tool to promote osteogenic differentiation under inflammatory conditions.
UR - http://www.scopus.com/inward/record.url?scp=85046261594&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85046261594&partnerID=8YFLogxK
U2 - 10.1097/01.bot.0000520897.92470.70
DO - 10.1097/01.bot.0000520897.92470.70
M3 - Article
C2 - 28632668
AN - SCOPUS:85046261594
SN - 0890-5339
VL - 31
SP - S4
JO - Journal of Orthopaedic Trauma
JF - Journal of Orthopaedic Trauma
IS - 7
ER -