Lsi-based amperometric device for electrochemical imaging of drug effect on dopamine release from three-dimensional cultured pc12 cells

H. Abe, K. Ino, C. Z. Li, Y. Kanno, K. Y. Inoue, A. Suda, R. Kunikata, M. Matsudaira, Y. Takahashi, H. Shiku, T. Matsue

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

We report a large-scale integration (LSI) based amperometric chip device containing 400 sensors with a pitch of 250 μm and its applications for biological analysis of dopamine release from three-dimensional (3D) cultured cells using rat pheochromocytoma (PC12) cells as a neural cell model. The 3D cultured PC12 cells (PC12 spheroids) were stimulated with a high K+ solution to induce dopamine release. We showed clearly drug effects of dopaminergic drugs L-3,4-dihydroxyphenylalanine, (L-DOPA) and reserpine on dopamine release from PC12 spheroids. Our results indicate that the device is a useful tool for evaluating the effects of dopaminergic drugs.

Original languageEnglish
Title of host publicationMicroTAS 2015 - 19th International Conference on Miniaturized Systems for Chemistry and Life Sciences
PublisherChemical and Biological Microsystems Society
Pages1598-1600
Number of pages3
ISBN (Electronic)9780979806483
Publication statusPublished - 2015
Event19th International Conference on Miniaturized Systems for Chemistry and Life Sciences, MicroTAS 2015 - Gyeongju, Korea, Republic of
Duration: 2015 Oct 252015 Oct 29

Publication series

NameMicroTAS 2015 - 19th International Conference on Miniaturized Systems for Chemistry and Life Sciences

Conference

Conference19th International Conference on Miniaturized Systems for Chemistry and Life Sciences, MicroTAS 2015
Country/TerritoryKorea, Republic of
CityGyeongju
Period15/10/2515/10/29

Keywords

  • CMOS
  • Neurotransmitter
  • Spheroid

Fingerprint

Dive into the research topics of 'Lsi-based amperometric device for electrochemical imaging of drug effect on dopamine release from three-dimensional cultured pc12 cells'. Together they form a unique fingerprint.

Cite this