Abstract
The Nd-doped and Er-doped LuF3 single crystals were grown by the micro-pulling-down method to study their scintillation properties in the vacuum-ultraviolet (VUV) region. The doubly Nd-Er codoped single crystal was grown to study possibility of scintillation performance improvement by energy transfer from Er3+ to Nd3+ ions. The LiF flux was to avoid phase transition below melting temperature. The 1%Nd-doped sample showed the highest overall scintillation efficiency under X-ray excitation which was 7 times as high as that of the LaF3:Nd 8% standard. The leading Nd3+ 5d-4f emission was situated at 176 nm, while the Er3+ 5d-4f emission for Er-doped samples was observed at 163 nm, which better matches the sensitivity of some VUV-sensitive photodetectors. The optimum Er concentration was determined to be around 1-3 mol%. No Er3+ 5d-4f emission was observed for the doubly Er,Nd-codoped sample due to energy transfer from the Er3+ to Nd3+ ions. Slight improvement of the light yield was observed in the doubly-doped sample with respect to the Nd-only doped one.
Original language | English |
---|---|
Pages (from-to) | 58-62 |
Number of pages | 5 |
Journal | Optical Materials |
Volume | 41 |
DOIs | |
Publication status | Published - 2015 Mar 1 |
Keywords
- Lutetium fluoride
- Scintillator
- VUV luminescence
ASJC Scopus subject areas
- Electronic, Optical and Magnetic Materials
- Computer Science(all)
- Atomic and Molecular Physics, and Optics
- Spectroscopy
- Physical and Theoretical Chemistry
- Organic Chemistry
- Inorganic Chemistry
- Electrical and Electronic Engineering