TY - JOUR
T1 - Magnetic excitations in the Zn-Mg-Tb icosahedral quasicrystal
T2 - An inelastic neutron scattering study
AU - Sato, Taku J.
AU - Takakura, Hiroyuki
AU - Tsai, An Pang
AU - Shibata, Kaoru
PY - 2006
Y1 - 2006
N2 - Low-temperature spin dynamics in the face-centered-icosahedral Zn-Mg-Tb quasicrystal has been investigated by inelastic neutron scattering around its spin-glass-like freezing temperature (Tf 5.8 K). A single broad inelastic peak, centered at ω 2.5 meV, was observed in the inelastic scattering spectrum at temperatures ranging from the base temperature up to ∼20 K. The inelastic peak energy is Q independent, whereas the peak intensity shows weak Q dependence, which is qualitatively similar to that observed for the elastic diffuse scattering. The inelasticity of spin excitations is hardly seen in canonical spin glasses and thus is a distinct feature of the Zn-Mg-Tb quasicrystal. We argue, with an aide of numerical simulation, that this broad inelastic peak can be interpreted as localized collective fluctuations of short-range-ordered spins in a dodecahedral spin cluster. In a much lower-energy region (ω<0.8 meV), we observed a strong quasielastic signal, appearing only above Tf; its peak width decreases as the temperature is lowered and vanishes at Tf. It is thus evident that the quasielastic signal corresponds to a slow spin dynamics that freezes at the macroscopic freezing temperature. The coexistence of the inelastic peak and quasielastic signal suggests that the short-range order in the single cluster is robustly formed but is dynamic for Tf <T<20 K. The macroscopic freezing at Tf is, thus, attributed to a random freezing of spin-cluster fluctuations.
AB - Low-temperature spin dynamics in the face-centered-icosahedral Zn-Mg-Tb quasicrystal has been investigated by inelastic neutron scattering around its spin-glass-like freezing temperature (Tf 5.8 K). A single broad inelastic peak, centered at ω 2.5 meV, was observed in the inelastic scattering spectrum at temperatures ranging from the base temperature up to ∼20 K. The inelastic peak energy is Q independent, whereas the peak intensity shows weak Q dependence, which is qualitatively similar to that observed for the elastic diffuse scattering. The inelasticity of spin excitations is hardly seen in canonical spin glasses and thus is a distinct feature of the Zn-Mg-Tb quasicrystal. We argue, with an aide of numerical simulation, that this broad inelastic peak can be interpreted as localized collective fluctuations of short-range-ordered spins in a dodecahedral spin cluster. In a much lower-energy region (ω<0.8 meV), we observed a strong quasielastic signal, appearing only above Tf; its peak width decreases as the temperature is lowered and vanishes at Tf. It is thus evident that the quasielastic signal corresponds to a slow spin dynamics that freezes at the macroscopic freezing temperature. The coexistence of the inelastic peak and quasielastic signal suggests that the short-range order in the single cluster is robustly formed but is dynamic for Tf <T<20 K. The macroscopic freezing at Tf is, thus, attributed to a random freezing of spin-cluster fluctuations.
UR - http://www.scopus.com/inward/record.url?scp=33244494423&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=33244494423&partnerID=8YFLogxK
U2 - 10.1103/PhysRevB.73.054417
DO - 10.1103/PhysRevB.73.054417
M3 - Article
AN - SCOPUS:33244494423
SN - 1098-0121
VL - 73
JO - Physical Review B - Condensed Matter and Materials Physics
JF - Physical Review B - Condensed Matter and Materials Physics
IS - 5
M1 - 054417
ER -