Magnetic properties of icosahedral quasicrystals and their cubic approximants in the Cd-Mg-RE (RE = Gd, Tb, Dy, Ho, Er, and Tm) systems

Farid Labib, Daisuke Okuyama, Nobuhisa Fujita, Tsunetomo Yamada, Satoshi Ohhashi, Taku J. Sato, An Pang Tsai

Research output: Contribution to journalArticlepeer-review

9 Citations (Scopus)

Abstract

A systematic investigation has been performed to elucidate effects of rare earth type and structural complexity on magnetic properties of icosahedral quasicrystal (iQC) and their cubic approximants (APs) in the ternary Cd-Mg-RE (RE = Gd, Tb, Dy, Ho, Er, and Tm) systems. At low temperatures, iQCs and 2/1 APs exhibit spin-glass-like freezing for RE = Gd, Tb, Dy, and Ho, while for Er and Tm they do not show freezing behavior down to the base temperature ∼2 K. The 1/1 APs exhibit either spin-glass-like freezing or antiferromagnetic (AFM) ordering depending on their constituent Mg content. The T f values show increasing trend from iQC to 2/1 and 1/1 APs. In contrast, the absolute values of Weiss temperature for iQCs are larger than those in 2/1 and 1/1 APs, indicating that the total AFM interactions between the neighboring spins are larger in aperiodic, rather than periodic systems. Competing spin interactions originating from the long-range Ruderman-Kittel-Kasuya-Yoshida mechanism along with chemical disorder of Cd/Mg ions presumably account for the observed spin-glass-like behavior in Cd-Mg-RE iQCs and APs.

Original languageEnglish
Article number415801
JournalJournal of Physics Condensed Matter
Volume32
Issue number41
DOIs
Publication statusPublished - 2020 Sept 30

Fingerprint

Dive into the research topics of 'Magnetic properties of icosahedral quasicrystals and their cubic approximants in the Cd-Mg-RE (RE = Gd, Tb, Dy, Ho, Er, and Tm) systems'. Together they form a unique fingerprint.

Cite this