Magnetization damping in a local-density approximation

Hans Joakim Skadsem, Yaroslav Tserkovnyak, Arne Brataas, Gerrit E.W. Bauer

Research output: Contribution to journalArticlepeer-review

33 Citations (Scopus)


The linear response of itinerant transition-metal ferromagnets to transverse magnetic fields is studied in a self-consistent adiabatic local-density approximation. The susceptibility is calculated from a microscopic Hamiltonian, including spin-conserving impurities, impurity-induced spin-orbit interaction, and magnetic impurities using the Keldysh formalism. The Gilbert damping constant in the Landau-Lifshitz-Gilbert equation is identified, parametrized by an effective transverse spin dephasing rate, and is found to be inversely proportional to the exchange splitting. Our results justify the phenomenological treatment of transverse spin dephasing in the study of current-induced magnetization dynamics in weak, itinerant ferromagnets by Tserkovnyak [Phys. Rev. B 74, 144405 (2006)]. We show that neglect of gradient corrections in the quasiclassical transport equations leads to incorrect results when the exchange potential becomes of the order of the Fermi energy.

Original languageEnglish
Article number094416
JournalPhysical Review B - Condensed Matter and Materials Physics
Issue number9
Publication statusPublished - 2007 Mar 14


Dive into the research topics of 'Magnetization damping in a local-density approximation'. Together they form a unique fingerprint.

Cite this