Abstract
Previous studies have shown that the different preferences of thermophiles to oxidize S0 or Fe2+ is reflected by different [Fe3+]/[Fe2+] levels in solution. In those studies it was concluded that [Fe3+]/[Fe2+] governs the thermophilic bioleaching of chalcopyrite rather than temperature or pH. Therefore, the proposed model is mainly based on the finding that thermophilic bioleaching of chalcopyrite is governed by [Fe3+]/[Fe2+] that result from the activity of thermophiles. A direct interaction between chalcopyrite and thermophiles is neglected because it has been reported that this is not a general behavior for all thermophiles. The case of constant temperature, initial pH 1.5-2.5, and chalcopyrite concentrates is considered. The main assumption is that chalcopyrite can be anodically oxidized or cathodically reduced depending on [Fe3+]/[Fe2+] in solution. When chalcopyrite is oxidized at high [Fe3+]/[Fe2+] levels, Cu2+ is formed directly at low rates: CuFeS2 + 4Fe3+ → Cu2+ + 5Fe2+ + S0. Whereas, when chalcopyrite is reduced at low [Fe3+]/[Fe2+] levels, an intermediate (Cu2S) is formed at higher rates: CuFeS2 + Fe2+ + Cu2+ + 2H+ → Cu2S + 2Fe3+ + H2S. Because the oxidation of Cu2S is relatively fast: Cu2S + 4Fe3+ → 2Cu2+ + S0 + 4Fe2+, its accumulation is assumed to be negligible. To take into account the possibility of chalcopyrite being oxidized or reduced depending on [Fe3+]/[Fe2+] in solution, the principle of mixed potentials is used. The model is validated by comparing the calculated and measured values of copper extraction, total iron in solution, and pH.
Original language | English |
---|---|
Pages (from-to) | 951-960 |
Number of pages | 10 |
Journal | Minerals Engineering |
Volume | 22 |
Issue number | 11 |
DOIs | |
Publication status | Published - 2009 Oct |
Keywords
- Bioleaching
- Modelling
- Reaction kinetics
- Sulphide ores
ASJC Scopus subject areas
- Control and Systems Engineering
- Chemistry(all)
- Geotechnical Engineering and Engineering Geology
- Mechanical Engineering