Mechanical properties of porous titanium compacts reinforced by UHMWPE

N. Nomura, Y. BaBa, A. Kawamura, S. Fujinuma, A. Chiba, N. Masahashi, S. Hanada

Research output: Chapter in Book/Report/Conference proceedingConference contribution

4 Citations (Scopus)

Abstract

Porous Ti compacts reinforced by ultra-high molecular weight polyethylene (UHMWPE) were fabricated and their mechanical properties were evaluated. Ti powder atomized by plasma rotating electrode process (PREP) was sintered at temperatures ranging from 1473 K to 1673 K for 7.2 ks in a vacuum. The porous Ti compacts contain the porosity of about 40%, irrespective of the sintering temperature. Porous Ti/UHMWPE composites were successfully fabricated by compressing UHMWPE powder into the porous Ti compacts. The compacts exhibit open pore structure and enables the penetration of UHMWPE into pores in the compacts. Young's modulus of the composites is higher than that of the porous Ti compacts. The increment in Young's modulus is not simply explained by the rule of mixture because Young's modulus of the UHMWPE is approximately 1.3 GPa. Three-point bending strength of the composites is improved, presumably due to the local stress relief by UHMWPE in the vicinity of neck in the composites.

Original languageEnglish
Title of host publicationSupplement to THERMEC 2006, 5th International Conference on PROCESSING and MANUFACTURING OF ADVANCED MATERIALS, THERMEC 2006
PublisherTrans Tech Publications Ltd
Pages1033-1037
Number of pages5
EditionPART 1
ISBN (Print)0878494286, 9780878494286
DOIs
Publication statusPublished - 2007
Event5th International Conference on Processing and Manufacturing of Advanced Materials - THERMEC'2006 - Vancouver, Canada
Duration: 2006 Jul 42006 Jul 8

Publication series

NameMaterials Science Forum
NumberPART 1
Volume539-543
ISSN (Print)0255-5476
ISSN (Electronic)1662-9752

Other

Other5th International Conference on Processing and Manufacturing of Advanced Materials - THERMEC'2006
Country/TerritoryCanada
CityVancouver
Period06/7/406/7/8

Keywords

  • Bending strength
  • Porous Ti
  • Porous Ti/UHMWPE composite
  • Young's modulus

ASJC Scopus subject areas

  • Materials Science(all)
  • Condensed Matter Physics
  • Mechanics of Materials
  • Mechanical Engineering

Fingerprint

Dive into the research topics of 'Mechanical properties of porous titanium compacts reinforced by UHMWPE'. Together they form a unique fingerprint.

Cite this