Mechanism of self-assembly process and seeded supramolecular polymerization of perylene bisimide organogelator

Soichiro Ogi, Vladimir Stepanenko, Kazunori Sugiyasu, Masayuki Takeuchi, Frank Würthner

Research output: Contribution to journalArticlepeer-review

364 Citations (Scopus)


The mechanism of supramolecular polymerization has been elucidated for an archetype organogelator molecule composed of a perylene bisimide aromatic scaffold and two amide substituents. This molecule self-assembles into elongated one-dimensional nanofibers through a cooperative nucleation-growth process. Thermodynamic and kinetic analyses have been applied to discover conditions (temperature, solvent, concentration) where the spontaneous nucleation can be retarded by trapping of the monomers in an inactive conformation, leading to lag times up to more than 1 h. The unique kinetics in the nucleation process was confirmed as a thermal hysteresis in a cycle of assembly and disassembly processes. Under appropriate conditions within the hysteresis loop, addition of preassembled nanofiber seeds leads to seeded polymerization from the termini of the seeds in a living supramolecular polymerization process. These results demonstrate that seeded polymerizations are not limited to special situations where off-pathway aggregates sequester the monomeric reactant species but may be applicable to a large number of known and to be developed molecules from the large family of molecules that self-assemble into one-dimensional nanofibrous structures. Generalizing from the mechanistic insight into our seeded polymerization, we assert that a cooperative nucleation-growth supramolecular polymerization accompanied by thermal hysteresis can be controlled in a living manner.

Original languageEnglish
Pages (from-to)3300-3307
Number of pages8
JournalJournal of the American Chemical Society
Issue number9
Publication statusPublished - 2015 Feb


Dive into the research topics of 'Mechanism of self-assembly process and seeded supramolecular polymerization of perylene bisimide organogelator'. Together they form a unique fingerprint.

Cite this