TY - JOUR
T1 - Mechanisms of MAdCAM-1 gene expression in human intestinal microvascular endothelial cells
AU - Ogawa, Hitoshi
AU - Binion, David G.
AU - Heidemann, Jan
AU - Theriot, Monica
AU - Fisher, Pamela J.
AU - Johnson, Nathan A.
AU - Otterson, Mary F.
AU - Rafiee, Parvaneh
PY - 2005/2
Y1 - 2005/2
N2 - Mucosal addressin cell adhesion molecule-1 (MAdCAM-1) is a homing receptor preferentially expressed on gut-associated endothelial cells that plays a central role in leukocyte traffic into the mucosal immune compartment. Although the molecular mechanisms underlying endothelial ICAM-1 or E-selectin expression have been intensively investigated, the mechanisms that regulate human MAdCAM-1 expression have not been defined. We report MAdCAM-1 gene and protein expression in primary cultures of human intestinal microvascular endothelial cells (HIMEC) that was not demonstrated in human umbilical vein endothelial cells. Similar to ICAM-1 and E-selectin expression, MAdCAM-1 gene expression in HIMEC was inducible with TNF-α, IL-1β, or LPS activation. However, in striking contrast to ICAM-1 and E-selectin expression, MAdCAM-1 mRNA and protein expression in HIMEC was heavily dependent on culture duration and/or cellular, density, suggesting a prominent role for cell-cell interaction among these endothelial cells in the expression of the mucosal addressin. MAdCAM-1 expression was inhibited by both SN-50 (NF-κB inhibitor) and LY-294002 [phosphatidylinositol 3-kinase (PI3-K) inhibitor], whereas ICAM-1 and E-selectin expression was inhibited by SN-50 but not by LY-294002. The Akt phosphorylation by TNF-α or LPS was greater at higher cell density, demonstrating a pattern similar to that of MAdCAM-1 expression. NF-κB activation was not affected by cellular density in HIMEC. MAdCAM-1 expression in human gut endothelial cells is regulated by distinct signaling mechanisms involving both NF-κB and PI3-K/Akt. These data also suggest that PI3-K/ Akt is involved in the gut-specific differentiation of HIMEC, which results in expression of the mucosal addressin MAdCAM-1.
AB - Mucosal addressin cell adhesion molecule-1 (MAdCAM-1) is a homing receptor preferentially expressed on gut-associated endothelial cells that plays a central role in leukocyte traffic into the mucosal immune compartment. Although the molecular mechanisms underlying endothelial ICAM-1 or E-selectin expression have been intensively investigated, the mechanisms that regulate human MAdCAM-1 expression have not been defined. We report MAdCAM-1 gene and protein expression in primary cultures of human intestinal microvascular endothelial cells (HIMEC) that was not demonstrated in human umbilical vein endothelial cells. Similar to ICAM-1 and E-selectin expression, MAdCAM-1 gene expression in HIMEC was inducible with TNF-α, IL-1β, or LPS activation. However, in striking contrast to ICAM-1 and E-selectin expression, MAdCAM-1 mRNA and protein expression in HIMEC was heavily dependent on culture duration and/or cellular, density, suggesting a prominent role for cell-cell interaction among these endothelial cells in the expression of the mucosal addressin. MAdCAM-1 expression was inhibited by both SN-50 (NF-κB inhibitor) and LY-294002 [phosphatidylinositol 3-kinase (PI3-K) inhibitor], whereas ICAM-1 and E-selectin expression was inhibited by SN-50 but not by LY-294002. The Akt phosphorylation by TNF-α or LPS was greater at higher cell density, demonstrating a pattern similar to that of MAdCAM-1 expression. NF-κB activation was not affected by cellular density in HIMEC. MAdCAM-1 expression in human gut endothelial cells is regulated by distinct signaling mechanisms involving both NF-κB and PI3-K/Akt. These data also suggest that PI3-K/ Akt is involved in the gut-specific differentiation of HIMEC, which results in expression of the mucosal addressin MAdCAM-1.
KW - Cell adhesion molecules
KW - Nuclear factor-κB
KW - Phosphatidylinositol 3-kinase
UR - http://www.scopus.com/inward/record.url?scp=12144271043&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=12144271043&partnerID=8YFLogxK
U2 - 10.1152/ajpcell.00406.2003
DO - 10.1152/ajpcell.00406.2003
M3 - Article
C2 - 15483224
AN - SCOPUS:12144271043
SN - 0002-9513
VL - 288
JO - American Journal of Physiology - Endocrinology and Metabolism
JF - American Journal of Physiology - Endocrinology and Metabolism
IS - 2 57-2
ER -