Microscopic molecular translational dynamics in cholesteric and cholesteric blue phases

Makina Saito, Jun Yamamoto, Ryo Masuda, Masayuki Kurokuzu, Yoshitaka Yoda, Makoto Seto

Research output: Contribution to journalArticlepeer-review

2 Citations (Scopus)


In the nematic (N) phase, the molecular symmetry axis orients on average along one direction denoted as the director. The cholesteric (Ch) phase shows similar orientational order locally. However, the average molecular direction in the Ch phase rotates continuously around a direction perpendicular to the director. The cholesteric blue phase (ChBP) shows a double-twist orientational order that differs from the single-twist order of the Ch phase and also shows self-assembled three-dimensional lattice structure of defect lines of the orientational order in the mesoscopic spatial scale. The helical structure of the molecular orientation in ChBP brings the structural colour and photonic band gap into the wavelength range of visible light. Therefore, ChBP has been studied for applications to photonic elements and fast-response displays. We measured the molecular translational dynamics along the molecular long axis in the Ch phase, ChBP and the isotropic (Iso) liquid phase of the mixture system of the nematic liquid crystal 4′-heptyloxy-4-biphenylcarbonitrile and the chiral dopant (S)-4′-(2-methylbutyl)-4-biphenylcarbonitrile directly at the nanometric molecular scale by using quasi-elastic scattering spectroscopy using Mössbauer gamma ray. We successfully determined the timescale of the molecular translational motion in the Ch phase to be 40 ns, which is similar to the timescale of the N phase of 4′-n-octyl-4-cyanobiphenyl. In the ChBP and Iso phase, molecular motions occur on timescales similar to those of the Ch phase, suggesting that the molecular dynamics is insensitive to the presence of orientational order, the helical structure, and higher-order structure. Our results demonstrate that the molecular dynamics in both the Ch phase and ChBP can be measured by quasi-elastic gamma-ray-scattering spectroscopy, in addition to the time scales of molecular motions in the N and smectic phases. The present results greatly expand the possibility of using this spectroscopic technique for molecular-mobility studies of industrial liquid-crystalline materials, because Ch liquid crystals are widely used for display systems in addition to N liquid crystals.

Original languageEnglish
Article number14
JournalHyperfine Interactions
Issue number1
Publication statusPublished - 2019 Dec 1


  • Cholesteric blue phase
  • Cholesteric phase
  • Liquid crystal
  • Mössbauer gamma ray
  • Quasi-elastic scattering
  • Time-domain interferometry


Dive into the research topics of 'Microscopic molecular translational dynamics in cholesteric and cholesteric blue phases'. Together they form a unique fingerprint.

Cite this