Mission to Earth-Moon Lagrange Point by a 6U CubeSat: EQUULEUS

Ryu Funase, Satoshi Ikari, Kota Miyoshi, Yosuke Kawabata, Shintaro Nakajima, Shunichiro Nomura, Nobuhiro Funabiki, Akihiro Ishikawa, Kota Kakihara, Shuhei Matsushita, Ryohei Takahashi, Kanta Yanagida, Daiko Mori, Yusuke Murata, Toshihiro Shibukawa, Ryo Suzumoto, Masahiro Fujiwara, Kento Tomita, Hiroki Aohama, Keidai IiyamaSho Ishiwata, Hirotaka Kondo, Wataru Mikuriya, Hiroto Seki, Hiroyuki Koizumi, Jun Asakawa, Keita Nishii, Akihiro Hattori, Yuji Saito, Kosei Kikuchi, Yuta Kobayashi, Atsushi Tomiki, Wataru Torii, Taichi Ito, Stefano Campagnola, Naoya Ozaki, Nicola Baresi, Ichiro Yoshikawa, Kazuo Yoshioka, Masaki Kuwabara, Reina Hikida, Shogo Arao, Shinsuke Abe, Masahisa Yanagisawa, Ryota Fuse, Yosuke Masuda, Hajime Yano, Takayuki Hirai, Kazuyoshi Arai, Ritsuko Jitsukawa, Eigo Ishioka, Haruki Nakano, Toshinori Ikenaga, Tatsuaki Hashimoto

Research output: Contribution to journalArticlepeer-review

22 Citations (Scopus)

Abstract

EQUULEUS (EQUilibriUm Lunar-Earth point 6U Spacecraft) will be the world's smallest spacecraft to explore the Earth-Moon Lagrange point. It is being jointly developed by JAXA (Japan Aerospace Exploration Agency) and the University of Tokyo, and will be launched by NASA's Space Launch System Exploration Mission-1. The spacecraft will fly to a libration orbit around the Earth-Moon L2 point (EML2) and will demonstrate low-energy trajectory-control techniques within the Sun-Earth-Moon region for the first time by a nano-class spacecraft. EQUULEUS also carries three scientific observation missions: imaging of Earth's plasmasphere by extreme ultraviolet wavelength, lunar impact flash observation on the far side of the moon, and micrometeoroid flux measurements in the cis-lunar region. While all these missions have their own scientific objectives, they will also contribute to future human activity and/or infrastructure development in the cis-lunar region. Most parts of the spacecraft system use commercial off-the-shelf components, or are designed based on the experiences of various past space missions, with the exception of the newly developed water resistojet propulsion system. EQUULEUS uses X-band frequency for deep space telecommunication. Japanese deep space antennas (64-m and 34-m) will be nominally used for spacecraft operation, and support from the deep space network of JPL (Jet Propulsion Laboratory) is also being planned, especially for the initial phase of operation. The spacecraft will fly to EML2 in less than one year, and will remain there for scientific observations until shortly before the depletion of the onboard propellant, when the spacecraft will leave the orbit for space-debris compliance.

Original languageEnglish
Article number9076200
Pages (from-to)30-44
Number of pages15
JournalIEEE Aerospace and Electronic Systems Magazine
Volume35
Issue number3
DOIs
Publication statusPublished - 2020 Mar 1

Fingerprint

Dive into the research topics of 'Mission to Earth-Moon Lagrange Point by a 6U CubeSat: EQUULEUS'. Together they form a unique fingerprint.

Cite this