Model for the microstructure of oxide eutectics and comparison with experimental observations

Hiroshi Kaiden, Stephen D. Durbin, Akira Yoshikawa, Jong Ho Lee, Kazumasa Sugiyama, Tsuguo Fukuda

Research output: Contribution to journalArticlepeer-review

9 Citations (Scopus)

Abstract

The properties of eutectic materials depend strongly on their microstructure. In the case of oxide systems, which exhibit complex microstructures due to the tendencies of the two phases to grow in a faceted manner, conventional eutectic growth theory has been unable to give a detailed account of the process of microstructure formation. We describe here a cellular automata-based model that is able to reproduce key features and general trends observed experimentally in our investigations of oxide eutectic fibers of Al2O3/R3Al5O12, Al2O3/RAlO3, and related systems, where R is one of a series of rare earth elements. The most important parameters controlling the type of microstructure that develops are the volume fractions and faceting tendencies of the two components. The model provides guidelines for the design of materials with optimized microstructures for particular applications.

Original languageEnglish
Pages (from-to)259-264
Number of pages6
JournalJournal of Alloys and Compounds
Volume336
Issue number1-2
DOIs
Publication statusPublished - 2002 Apr 18

Keywords

  • Computer simulations
  • Microstructure
  • Oxide materials

Fingerprint

Dive into the research topics of 'Model for the microstructure of oxide eutectics and comparison with experimental observations'. Together they form a unique fingerprint.

Cite this