TY - GEN
T1 - Molecular dynamics analysis of the acceleration of intergranular cracking of Ni-base superalloy caused by accumulation of vacancies and dislocations around grain boundaries
AU - Kikuchi, Ryo
AU - Suzuki, Shujiro
AU - Suzuki, Ken
N1 - Funding Information:
This research activity has been supported partially by Japanese special coordination funds for promoting science and technology, Japanese Grants-in-aid for Scientific Research, and Tohoku University. This research was supported partly by JSPS KAKENHI Grant Number JP16H06357.
Publisher Copyright:
© 2020 American Society of Mechanical Engineers (ASME). All rights reserved.
Copyright:
Copyright 2021 Elsevier B.V., All rights reserved.
PY - 2020
Y1 - 2020
N2 - Ni-based superalloys with excellent high temperature strength have been used in advanced thermal power plants. It was found that grain boundary cracking is caused in the alloy under creep-fatigue loading due to the degradation of the crystallinity of grain boundaries and the grain boundary cracking degrades the lifetime of the alloy drastically. In order to clarify the mechanism of intergranular cracking, in this research, static and dynamic strains were applied to a bicrystal structure of the alloy perpendicularly to the grain boundary using molecular dynamics analysis. In addition, the effect of the accumulation of vacancies in the area with high-density of dislocations on the strength of the bicrystal structure was analysed. It was found that the fracture mode of the bicrystal structure changed from ductile transgranular fracture to brittle intergranular one as strong functions of the combination of Schmid factor of the two grains and the density of defects around the grain boundary. The local heavy plastic deformation occurred around the grain boundary with large difference in Schmid factor between nearby grains and the diffusion of the newly grown dislocations and vacancies was suppressed by the large strain field due to the large mismatch of the crystallographic orientation between the grains. The accumulation of vacancies accelerated the local plastic deformation around the grain boundary. Therefore, the mechanism of the acceleration of intergranular cracking under creep-fatigue loading was successfully clarified by MD analysis.
AB - Ni-based superalloys with excellent high temperature strength have been used in advanced thermal power plants. It was found that grain boundary cracking is caused in the alloy under creep-fatigue loading due to the degradation of the crystallinity of grain boundaries and the grain boundary cracking degrades the lifetime of the alloy drastically. In order to clarify the mechanism of intergranular cracking, in this research, static and dynamic strains were applied to a bicrystal structure of the alloy perpendicularly to the grain boundary using molecular dynamics analysis. In addition, the effect of the accumulation of vacancies in the area with high-density of dislocations on the strength of the bicrystal structure was analysed. It was found that the fracture mode of the bicrystal structure changed from ductile transgranular fracture to brittle intergranular one as strong functions of the combination of Schmid factor of the two grains and the density of defects around the grain boundary. The local heavy plastic deformation occurred around the grain boundary with large difference in Schmid factor between nearby grains and the diffusion of the newly grown dislocations and vacancies was suppressed by the large strain field due to the large mismatch of the crystallographic orientation between the grains. The accumulation of vacancies accelerated the local plastic deformation around the grain boundary. Therefore, the mechanism of the acceleration of intergranular cracking under creep-fatigue loading was successfully clarified by MD analysis.
KW - Creep-Fatigue damage
KW - Molecular dynamics
KW - Ni-base superalloy
KW - Strength of a grain boundary
UR - http://www.scopus.com/inward/record.url?scp=85101292842&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85101292842&partnerID=8YFLogxK
U2 - 10.1115/IMECE2020-23352
DO - 10.1115/IMECE2020-23352
M3 - Conference contribution
AN - SCOPUS:85101292842
T3 - ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE)
BT - Mechanics of Solids, Structures, and Fluids
PB - American Society of Mechanical Engineers (ASME)
T2 - ASME 2020 International Mechanical Engineering Congress and Exposition, IMECE 2020
Y2 - 16 November 2020 through 19 November 2020
ER -