TY - JOUR
T1 - Molecular magnetism of M 6 hexagon ring in D 3 d symmetric [(MCl) 6(XW 9O 33) 2] 12- (M = Cu II and Mn II, X = Sb III and As III)
AU - Yamase, Toshihiro
AU - Ishikawa, Hirofumi
AU - Abe, Hiroko
AU - Fukaya, Keisuke
AU - Nojiri, Hiroyuki
AU - Takeuchi, Hideo
PY - 2012/4/16
Y1 - 2012/4/16
N2 - Ferromagnetic [n-BuNH 3] 12[(CuCl) 6(SbW 9O 33) 2]̇6H 2O (1) and antiferromagnetic [n-BuNH 3] 12[(MnCl) 6(AsW 9O 33) 2]̇6H 2O (4) have been synthesized and structurally and magnetically characterized. Two complexes are structural analogues of [n-BuNH 3] 12[(CuCl) 6(AsW 9O 33) 2]̇6H 2O (2) and [n-BuNH 3] 12[(MnCl) 6(SbW 9O 33) 2]̇6H 2O (3) with their ferromagnetic interactions, first reported by us in 2006.(1) When variable temperature (T) direct current (dc) magnetic susceptibility (χ M) data are analyzed with the isotropic exchange Hamiltonian for the magnetic exchange interactions, χ MT vs T curves fitted by a full matrix diagonalization (for 1) and by the Kambe vector coupling method/Van Vleck's approximation (for 4) yield J = +29.5 and -0.09 cm -1 and g = 2.3 and 1.9, respectively. These J values were significantly distinguished from +61.0 and +0.14 cm -1 for 2 and 3, respectively. The magnetization under the pulsed field (up to 10 3 T/s) at 0.5 K exhibits hysteresis loops in the adiabatic process, and the differential magnetization (dM/dB) plots against the pulsed field display peaks characteristic of resonant quantum tunneling of magnetization (QTM) at Zeeman crossed fields, indicating single-molecule magnets for 1-3. High-frequency ESR (HFESR) spectroscopy on polycrystalline samples provides g ∥ = 2.30, g ⊥ = 2.19, and D = -0.147 cm -1 for 1 (S = 3 ground state), g ∥ = 2.29, g ⊥ = 2.20, and D = -0.145 cm -1 for 2 (S = 3), and g ∥ = 2.03 and D = -0.007 cm -1 for 3 (S = 15). An attempt to rationalize the magnetostructural correlation among 1-4, the structurally and magnetically modified D 3d-symmetric M (=Cu II and Mn II) 6 hexagons sandwiched by two diamagnetic α-B-[XW 9O 33] 9- (X = Sb III and As III) ligands through M-(μ 3-O)-W linkages, is made. The strongest ferromagnetic coupling for the Cu 6 hexagon of 2, the structure of which approximately provides the Cu 6(μ 3-O) 12 cylindrical geometry, is demonstrated by the polarization mechanism based on the point-dipole approximation, which provides a decrease of the ferromagnetic interaction due to the out-of-cylinder deviation of the Cu atoms for 1. The different nature of the magnetic exchange interaction in 3 and 4 is understood by the combined effect of the out-of plane deviation (the largest for 4) of the Mn atoms from the Mn(μ 3-O) 2Mn least-squares plane and the antiferromagnetic contribution arising from the large Mn-O-Mn bond angle. The primary contribution to D is discussed in terms of the magnetic dipole-dipole interaction between the electrons located on the magnetic sites in the M 6 hexagon.
AB - Ferromagnetic [n-BuNH 3] 12[(CuCl) 6(SbW 9O 33) 2]̇6H 2O (1) and antiferromagnetic [n-BuNH 3] 12[(MnCl) 6(AsW 9O 33) 2]̇6H 2O (4) have been synthesized and structurally and magnetically characterized. Two complexes are structural analogues of [n-BuNH 3] 12[(CuCl) 6(AsW 9O 33) 2]̇6H 2O (2) and [n-BuNH 3] 12[(MnCl) 6(SbW 9O 33) 2]̇6H 2O (3) with their ferromagnetic interactions, first reported by us in 2006.(1) When variable temperature (T) direct current (dc) magnetic susceptibility (χ M) data are analyzed with the isotropic exchange Hamiltonian for the magnetic exchange interactions, χ MT vs T curves fitted by a full matrix diagonalization (for 1) and by the Kambe vector coupling method/Van Vleck's approximation (for 4) yield J = +29.5 and -0.09 cm -1 and g = 2.3 and 1.9, respectively. These J values were significantly distinguished from +61.0 and +0.14 cm -1 for 2 and 3, respectively. The magnetization under the pulsed field (up to 10 3 T/s) at 0.5 K exhibits hysteresis loops in the adiabatic process, and the differential magnetization (dM/dB) plots against the pulsed field display peaks characteristic of resonant quantum tunneling of magnetization (QTM) at Zeeman crossed fields, indicating single-molecule magnets for 1-3. High-frequency ESR (HFESR) spectroscopy on polycrystalline samples provides g ∥ = 2.30, g ⊥ = 2.19, and D = -0.147 cm -1 for 1 (S = 3 ground state), g ∥ = 2.29, g ⊥ = 2.20, and D = -0.145 cm -1 for 2 (S = 3), and g ∥ = 2.03 and D = -0.007 cm -1 for 3 (S = 15). An attempt to rationalize the magnetostructural correlation among 1-4, the structurally and magnetically modified D 3d-symmetric M (=Cu II and Mn II) 6 hexagons sandwiched by two diamagnetic α-B-[XW 9O 33] 9- (X = Sb III and As III) ligands through M-(μ 3-O)-W linkages, is made. The strongest ferromagnetic coupling for the Cu 6 hexagon of 2, the structure of which approximately provides the Cu 6(μ 3-O) 12 cylindrical geometry, is demonstrated by the polarization mechanism based on the point-dipole approximation, which provides a decrease of the ferromagnetic interaction due to the out-of-cylinder deviation of the Cu atoms for 1. The different nature of the magnetic exchange interaction in 3 and 4 is understood by the combined effect of the out-of plane deviation (the largest for 4) of the Mn atoms from the Mn(μ 3-O) 2Mn least-squares plane and the antiferromagnetic contribution arising from the large Mn-O-Mn bond angle. The primary contribution to D is discussed in terms of the magnetic dipole-dipole interaction between the electrons located on the magnetic sites in the M 6 hexagon.
UR - http://www.scopus.com/inward/record.url?scp=84859788436&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84859788436&partnerID=8YFLogxK
U2 - 10.1021/ic202513q
DO - 10.1021/ic202513q
M3 - Article
C2 - 22468944
AN - SCOPUS:84859788436
SN - 0020-1669
VL - 51
SP - 4606
EP - 4619
JO - Inorganic Chemistry
JF - Inorganic Chemistry
IS - 8
ER -