Molecular motility and affinity of expanded carbon dioxide+ketone systems analyzed by molecular dynamics simulations

T. Aida, T. Aizawa, M. Kanakubo, H. Nanjo

Research output: Contribution to journalArticlepeer-review

4 Citations (Scopus)

Abstract

We perform a molecular dynamics simulation for CO2+ketone mixtures to study the molecular motility and elucidate how CO2 molecules are dissolved in a mixture. The self-diffusion coefficients increase with increasing CO2 mole fraction (xCO2) and decreased with increasing molecular weight. These results mean that the mobility of molecules depends on the molecular size. To study molecular aggregation around CO2 molecules, radial distribution functions (RDFs) and the distance from neighboring molecules to CO2 molecules were calculated. The RDFs indicate that the CO2 molecule exists near the carbonyl oxygen atom. Because of the distance of the neighboring molecule from the CO2 molecule, the CO2 molecule is less likely to exist around a branched alkyl ketone than a normal alkyl ketone.

Original languageEnglish
Pages (from-to)172-177
Number of pages6
JournalFluid Phase Equilibria
Volume297
Issue number2
DOIs
Publication statusPublished - 2010 Oct 1
Externally publishedYes

Keywords

  • Carbon dioxide
  • Gas-expanded liquid
  • Ketone
  • MD simulation
  • Solution structure

ASJC Scopus subject areas

  • Chemical Engineering(all)
  • Physics and Astronomy(all)
  • Physical and Theoretical Chemistry

Fingerprint

Dive into the research topics of 'Molecular motility and affinity of expanded carbon dioxide+ketone systems analyzed by molecular dynamics simulations'. Together they form a unique fingerprint.

Cite this