TY - JOUR
T1 - Molecular nature of ultraviolet B light-induced deletions in the murine epidermis
AU - Horiguchi, M.
AU - Masumura, K.
AU - Ikehata, H.
AU - Ono, T.
AU - Kanke, Y.
AU - Nohmi, T.
PY - 2001/5/15
Y1 - 2001/5/15
N2 - Depletion of the stratospheric ozone layer leads to an increase in ambient UV loads, which are expected to raise skin cancer incidences. Tumor development in the skin could be a multistep process in which various genetic alterations, such as point mutations and deletions, occur successively. Here, we demonstrate that UVB irradiation efficiently induces deletions in the epidermis using a novel transgenic mouse, gpt delta. In this mouse model, deletions in λ DNA integrated in the chromosome are preferentially selected as Spi- (sensitive to P2 interference) phages, which can then be subjected to molecular analysis. The mice were exposed to UVB at single doses of 0.3, 0.5, 1.0, 1.5, and 2.0 kJ/m2. After 4 weeks, λ phage was rescued from the genomic DNA of the epidermis by in vitro packaging reactions. The mutant frequencies of Spi- with large deletions in the epidermis increased >15-fold at a UVB dose of 0.5 kJ/m2 over the control. Molecular sizes of most of the large deletions were >1000 bp. More than one-half of the large deletions occurred between short direct-repeat sequences from 1 to 6 bp, and the remainder had flush ends. In the unirradiated mouse, almost all of the Spi- mutants were 1-bp frameshifts in runs of identical bases. These results suggest that UVB irradiation induces deletions in the murine epidermis, and most of the deletions are generated through end-joining of double strand breaks in DNA.
AB - Depletion of the stratospheric ozone layer leads to an increase in ambient UV loads, which are expected to raise skin cancer incidences. Tumor development in the skin could be a multistep process in which various genetic alterations, such as point mutations and deletions, occur successively. Here, we demonstrate that UVB irradiation efficiently induces deletions in the epidermis using a novel transgenic mouse, gpt delta. In this mouse model, deletions in λ DNA integrated in the chromosome are preferentially selected as Spi- (sensitive to P2 interference) phages, which can then be subjected to molecular analysis. The mice were exposed to UVB at single doses of 0.3, 0.5, 1.0, 1.5, and 2.0 kJ/m2. After 4 weeks, λ phage was rescued from the genomic DNA of the epidermis by in vitro packaging reactions. The mutant frequencies of Spi- with large deletions in the epidermis increased >15-fold at a UVB dose of 0.5 kJ/m2 over the control. Molecular sizes of most of the large deletions were >1000 bp. More than one-half of the large deletions occurred between short direct-repeat sequences from 1 to 6 bp, and the remainder had flush ends. In the unirradiated mouse, almost all of the Spi- mutants were 1-bp frameshifts in runs of identical bases. These results suggest that UVB irradiation induces deletions in the murine epidermis, and most of the deletions are generated through end-joining of double strand breaks in DNA.
UR - http://www.scopus.com/inward/record.url?scp=0035872422&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0035872422&partnerID=8YFLogxK
M3 - Article
C2 - 11358805
AN - SCOPUS:0035872422
SN - 0008-5472
VL - 61
SP - 3913
EP - 3918
JO - Cancer Research
JF - Cancer Research
IS - 10
ER -