Molecular recognition of SARS-CoV-2 spike glycoprotein: quantum chemical hot spot and epitope analyses

Chiduru Watanabe, Yoshio Okiyama, Shigenori Tanaka, Kaori Fukuzawa, Teruki Honma

Research output: Contribution to journalArticlepeer-review

28 Citations (Scopus)


Due to the COVID-19 pandemic, researchers have attempted to identify complex structures of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike glycoprotein (S-protein) with angiotensin-converting enzyme 2 (ACE2) or a blocking antibody. However, the molecular recognition mechanism—critical information for drug and antibody design—has not been fully clarified at the amino acid residue level. Elucidating such a microscopic mechanism in detail requires a more accurate molecular interpretation that includes quantum mechanics to quantitatively evaluate hydrogen bonds, XH/π interactions (X = N, O, and C), and salt bridges. In this study, we applied the fragment molecular orbital (FMO) method to characterize the SARS-CoV-2 S-protein binding interactions with not only ACE2 but also the B38 Fab antibody involved in ACE2-inhibitory binding. By analyzing FMO-based interaction energies along a wide range of binding interfaces carefully, we identified amino acid residues critical for molecular recognition between S-protein and ACE2 or B38 Fab antibody. Importantly, hydrophobic residues that are involved in weak interactions such as CH-O hydrogen bond and XH/π interactions, as well as polar residues that construct conspicuous hydrogen bonds, play important roles in molecular recognition and binding ability. Moreover, through these FMO-based analyses, we also clarified novel hot spots and epitopes that had been overlooked in previous studies by structural and molecular mechanical approaches. Altogether, these hot spots/epitopes identified between S-protein and ACE2/B38 Fab antibody may provide useful information for future antibody design, evaluation of the binding property of the SARS-CoV-2 variants including its N501Y, and small or medium drug design against the SARS-CoV-2.

Original languageEnglish
Pages (from-to)4722-4739
Number of pages18
JournalChemical Science
Issue number13
Publication statusPublished - 2021 Apr 7

ASJC Scopus subject areas

  • Chemistry(all)


Dive into the research topics of 'Molecular recognition of SARS-CoV-2 spike glycoprotein: quantum chemical hot spot and epitope analyses'. Together they form a unique fingerprint.

Cite this