TY - JOUR
T1 - Multiscale modeling for polymeric flow
T2 - Particle-fluid bridging scale methods
AU - Murashima, Takahiro
AU - Yasuda, Shugo
AU - Taniguchi, Takashi
AU - Yamamoto, Ryoichi
PY - 2013/1
Y1 - 2013/1
N2 - Multiscale simulation methods have been developed based on the local stress sampling strategy and applied to three flow problems with different difficulty levels: (a) general flow problems of simple fluids, (b) parallel (one-dimensional) flow problems of polymeric liquids, and (c) general (two- or three-dimensional) flow problems of polymeric liquids. In our multiscale methods, the local stress of each fluid element is calculated directly by performing microscopic or mesoscopic simulations according to the local flow quantities instead of using any constitutive relations. For simple fluids (a), such as the Lenard-Jones liquid, a multiscale method combining molecular dynamics (MD) and computational fluid dynamics (CFD) simulations is developed rather straightforwardly based on the local stationarity assumption without memories of the flow history. For polymeric liquids in parallel flows (b), the multiscale method is extended to take into account the memory effects that arise in hydrodynamic stress due to the slow relaxation of polymer-chain conformations. The memory of polymer dynamics on each fluid element is thus resolved by performing MD simulations in which cells are fixed at the mesh nodes of the CFD simulations. The complicated viscoelastic flow behaviors of a polymeric liquid confined between oscillating plates are simulated using the multiscale method. For general (two- or three-dimensional) flow problems of polymeric liquids (c), it is necessary to trace the history of microscopic information such as polymer-chain conformation, which carries the memories of past flow history, along the streamline of each fluid element. A Lagrangian-based CFD is thus implemented to correctly advect the polymerchain conformation consistently with the flow. On each fluid element, coarse-grained polymer simulations are carried out to consider the dynamics of entangled polymer chains that show extremely slow relaxation compared to microscopic time scales. This method is successfully applied to simulate a flow around a cylindrical obstacle.
AB - Multiscale simulation methods have been developed based on the local stress sampling strategy and applied to three flow problems with different difficulty levels: (a) general flow problems of simple fluids, (b) parallel (one-dimensional) flow problems of polymeric liquids, and (c) general (two- or three-dimensional) flow problems of polymeric liquids. In our multiscale methods, the local stress of each fluid element is calculated directly by performing microscopic or mesoscopic simulations according to the local flow quantities instead of using any constitutive relations. For simple fluids (a), such as the Lenard-Jones liquid, a multiscale method combining molecular dynamics (MD) and computational fluid dynamics (CFD) simulations is developed rather straightforwardly based on the local stationarity assumption without memories of the flow history. For polymeric liquids in parallel flows (b), the multiscale method is extended to take into account the memory effects that arise in hydrodynamic stress due to the slow relaxation of polymer-chain conformations. The memory of polymer dynamics on each fluid element is thus resolved by performing MD simulations in which cells are fixed at the mesh nodes of the CFD simulations. The complicated viscoelastic flow behaviors of a polymeric liquid confined between oscillating plates are simulated using the multiscale method. For general (two- or three-dimensional) flow problems of polymeric liquids (c), it is necessary to trace the history of microscopic information such as polymer-chain conformation, which carries the memories of past flow history, along the streamline of each fluid element. A Lagrangian-based CFD is thus implemented to correctly advect the polymerchain conformation consistently with the flow. On each fluid element, coarse-grained polymer simulations are carried out to consider the dynamics of entangled polymer chains that show extremely slow relaxation compared to microscopic time scales. This method is successfully applied to simulate a flow around a cylindrical obstacle.
KW - Complex fluids
KW - Memory effect
KW - Modeling
KW - Multiscale
KW - Polymeric liquids
KW - Simulation
KW - Softmatters
KW - Viscoelastic fluids
UR - http://www.scopus.com/inward/record.url?scp=84871784578&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84871784578&partnerID=8YFLogxK
U2 - 10.7566/JPSJ.82.012001
DO - 10.7566/JPSJ.82.012001
M3 - Review article
AN - SCOPUS:84871784578
SN - 0031-9015
VL - 82
JO - Journal of the Physical Society of Japan
JF - Journal of the Physical Society of Japan
IS - 1
M1 - 012001
ER -