TY - JOUR
T1 - Nanocluster building blocks of artificial square spin ice
T2 - Stray-field studies of thermal dynamics
AU - Pohlit, Merlin
AU - Porrati, Fabrizio
AU - Huth, Michael
AU - Ohno, Yuzo
AU - Ohno, Hideo
AU - Müller, Jens
N1 - Publisher Copyright:
© 2015 AIP Publishing LLC.
PY - 2015/5/7
Y1 - 2015/5/7
N2 - We present measurements of the thermal dynamics of a Co-based single building block of an artificial square spin ice fabricated by focused electron-beam-induced deposition. We employ micro-Hall magnetometry, an ultra-sensitive tool to study the stray field emanating from magnetic nanostructures, as a new technique to access the dynamical properties during the magnetization reversal of the spin-ice nanocluster. The obtained hysteresis loop exhibits distinct steps, displaying a reduction of their "coercive field" with increasing temperature. Therefore, thermally unstable states could be repetitively prepared by relatively simple temperature and field protocols allowing one to investigate the statistics of their switching behavior within experimentally accessible timescales. For a selected switching event, we find a strong reduction of the so-prepared states' "survival time" with increasing temperature and magnetic field. Besides the possibility to control the lifetime of selected switching events at will, we find evidence for a more complex behavior caused by the special spin ice arrangement of the macrospins, i.e., that the magnetic reversal statistically follows distinct "paths" most likely driven by thermal perturbation.
AB - We present measurements of the thermal dynamics of a Co-based single building block of an artificial square spin ice fabricated by focused electron-beam-induced deposition. We employ micro-Hall magnetometry, an ultra-sensitive tool to study the stray field emanating from magnetic nanostructures, as a new technique to access the dynamical properties during the magnetization reversal of the spin-ice nanocluster. The obtained hysteresis loop exhibits distinct steps, displaying a reduction of their "coercive field" with increasing temperature. Therefore, thermally unstable states could be repetitively prepared by relatively simple temperature and field protocols allowing one to investigate the statistics of their switching behavior within experimentally accessible timescales. For a selected switching event, we find a strong reduction of the so-prepared states' "survival time" with increasing temperature and magnetic field. Besides the possibility to control the lifetime of selected switching events at will, we find evidence for a more complex behavior caused by the special spin ice arrangement of the macrospins, i.e., that the magnetic reversal statistically follows distinct "paths" most likely driven by thermal perturbation.
UR - http://www.scopus.com/inward/record.url?scp=84928494382&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84928494382&partnerID=8YFLogxK
U2 - 10.1063/1.4917497
DO - 10.1063/1.4917497
M3 - Article
AN - SCOPUS:84928494382
SN - 0021-8979
VL - 117
JO - Journal of Applied Physics
JF - Journal of Applied Physics
IS - 17
M1 - 17C746
ER -