Nanocluster building blocks of artificial square spin ice: Stray-field studies of thermal dynamics

Merlin Pohlit, Fabrizio Porrati, Michael Huth, Yuzo Ohno, Hideo Ohno, Jens Müller

Research output: Contribution to journalArticlepeer-review

12 Citations (Scopus)


We present measurements of the thermal dynamics of a Co-based single building block of an artificial square spin ice fabricated by focused electron-beam-induced deposition. We employ micro-Hall magnetometry, an ultra-sensitive tool to study the stray field emanating from magnetic nanostructures, as a new technique to access the dynamical properties during the magnetization reversal of the spin-ice nanocluster. The obtained hysteresis loop exhibits distinct steps, displaying a reduction of their "coercive field" with increasing temperature. Therefore, thermally unstable states could be repetitively prepared by relatively simple temperature and field protocols allowing one to investigate the statistics of their switching behavior within experimentally accessible timescales. For a selected switching event, we find a strong reduction of the so-prepared states' "survival time" with increasing temperature and magnetic field. Besides the possibility to control the lifetime of selected switching events at will, we find evidence for a more complex behavior caused by the special spin ice arrangement of the macrospins, i.e., that the magnetic reversal statistically follows distinct "paths" most likely driven by thermal perturbation.

Original languageEnglish
Article number17C746
JournalJournal of Applied Physics
Issue number17
Publication statusPublished - 2015 May 7


Dive into the research topics of 'Nanocluster building blocks of artificial square spin ice: Stray-field studies of thermal dynamics'. Together they form a unique fingerprint.

Cite this