TY - JOUR
T1 - Neumann problem for the Korteweg-de Vries equation
AU - Hayashi, Nakao
AU - Kaikina, Elena I.
PY - 2006/6/1
Y1 - 2006/6/1
N2 - We consider Neumann initial-boundary value problem for the Korteweg-de Vries equation on a half-line{A formula is presented} We prove that if the initial data u0 ∈ H1 0, frac(21,4) ∩ H21, frac(7, 2) and the norm {norm of matrix} u0 {norm of matrix}H10, frac(21, 4) + {norm of matrix} u0 {norm of matrix}H21, frac(7, 2) {less-than or slanted equal to} ε, where ε > 0 is small enough {Mathematical expression}, 〈 x 〉 = sqrt(1 + x2) and λ ∫0∞ x u0 ( x ) d x = λ θ < 0. Then there exists a unique solution u ∈ C ( [ 0, ∞ ), H21, frac(7, 2) ) ∩ L2 ( 0, ∞ ; H22, 3 ) of the initial-boundary value problem (0.1). Moreover there exists a constant C such that the solution has the following asymptotics{A formula is presented} for t → ∞ uniformly with respect to x > 0, where η = - 9 θ λ ∫0∞ A i′ 2 ( z ) d z and A i ( q ) is the Airy function{A formula is presented}.
AB - We consider Neumann initial-boundary value problem for the Korteweg-de Vries equation on a half-line{A formula is presented} We prove that if the initial data u0 ∈ H1 0, frac(21,4) ∩ H21, frac(7, 2) and the norm {norm of matrix} u0 {norm of matrix}H10, frac(21, 4) + {norm of matrix} u0 {norm of matrix}H21, frac(7, 2) {less-than or slanted equal to} ε, where ε > 0 is small enough {Mathematical expression}, 〈 x 〉 = sqrt(1 + x2) and λ ∫0∞ x u0 ( x ) d x = λ θ < 0. Then there exists a unique solution u ∈ C ( [ 0, ∞ ), H21, frac(7, 2) ) ∩ L2 ( 0, ∞ ; H22, 3 ) of the initial-boundary value problem (0.1). Moreover there exists a constant C such that the solution has the following asymptotics{A formula is presented} for t → ∞ uniformly with respect to x > 0, where η = - 9 θ λ ∫0∞ A i′ 2 ( z ) d z and A i ( q ) is the Airy function{A formula is presented}.
KW - Half-line
KW - Korteweg-de Vries equation
KW - Large time asymptotics
KW - Nonlinear evolution equation
UR - http://www.scopus.com/inward/record.url?scp=33747753129&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=33747753129&partnerID=8YFLogxK
U2 - 10.1016/j.jde.2006.01.017
DO - 10.1016/j.jde.2006.01.017
M3 - Article
AN - SCOPUS:33747753129
SN - 0022-0396
VL - 225
SP - 168
EP - 201
JO - Journal of Differential Equations
JF - Journal of Differential Equations
IS - 1
ER -