New Experimental Findings on Hot Carrier Effects in Sub-0.1 µm MOSFET's

F. Balestra, M. Koyanagi

Research output: Contribution to journalArticlepeer-review

12 Citations (Scopus)


The behaviors of the substrate current and the impact ionization rate are investigated for deep submicron devices in a wide temperature range. New important features are shown for the variations of the maximum substrate current as a function of applied biases and temperature. It is found that the gate voltage Vamaxcorresponding to the maximum impact ionization current conditions, is quasi-constant as a function of the drain bias for sub-0.1 µm MOSFET's in the room temperature range. At low temperature, a substantial increase of Va rnaxis observed when the drain voltage is reduced. It is also shown that, although a significant enhancement of hot carrier effects is observed by scaling down the devices, a strong reduction of the impact ionization rate is obtained for sub-0.1 µm MOSFET's operated at liquid nitrogen temperature in the low drain voltage range.

Original languageEnglish
Pages (from-to)433-435
Number of pages3
JournalIEEE Electron Device Letters
Issue number10
Publication statusPublished - 1995

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Electrical and Electronic Engineering


Dive into the research topics of 'New Experimental Findings on Hot Carrier Effects in Sub-0.1 µm MOSFET's'. Together they form a unique fingerprint.

Cite this