Abstract
The behaviors of the substrate current and the impact ionization rate are investigated for deep submicron devices in a wide temperature range. New important features are shown for the variations of the maximum substrate current as a function of applied biases and temperature. It is found that the gate voltage Vamaxcorresponding to the maximum impact ionization current conditions, is quasi-constant as a function of the drain bias for sub-0.1 µm MOSFET's in the room temperature range. At low temperature, a substantial increase of Va rnaxis observed when the drain voltage is reduced. It is also shown that, although a significant enhancement of hot carrier effects is observed by scaling down the devices, a strong reduction of the impact ionization rate is obtained for sub-0.1 µm MOSFET's operated at liquid nitrogen temperature in the low drain voltage range.
Original language | English |
---|---|
Pages (from-to) | 433-435 |
Number of pages | 3 |
Journal | IEEE Electron Device Letters |
Volume | 16 |
Issue number | 10 |
DOIs | |
Publication status | Published - 1995 |
ASJC Scopus subject areas
- Electronic, Optical and Magnetic Materials
- Electrical and Electronic Engineering